Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T21:50:12.926Z Has data issue: false hasContentIssue false

MORPHOMETRIC AND TECHNOLOGICAL ATTRIBUTES OF WESTERN STEMMED TRADITION PROJECTILE POINTS REVEALED IN A SECOND ARTIFACT CACHE FROM THE COOPER'S FERRY SITE, IDAHO

Published online by Cambridge University Press:  04 May 2017

Loren G. Davis*
Affiliation:
Pacific Slope Archaeological Laboratory, Oregon State University, Department of Anthropology, 238 Waldo Hall, Corvallis, OR 97331, USA
Daniel W. Bean
Affiliation:
Pacific Slope Archaeological Laboratory, Oregon State University, Department of Anthropology, 238 Waldo Hall, Corvallis, OR 97331, USA
Alexander J. Nyers
Affiliation:
Northwest Archaeometrics, 5060 Philomath Blvd. #331, Corvallis, OR 97333-4845, USA
*
(loren.davis@oregonstate.edu, corresponding author)

Abstract

In western North America, the Western Stemmed Tradition (WST) is contemporaneous with, but technologically different from, the Clovis Paleoindian Tradition as initially defined from the Great Plains and American Southwest. The foundational principles of WST lithic technology have not been as clearly delineated as those of their fluted and unfluted Paleoindian Tradition technological counterparts, largely due to the paucity of extensive WST lithic assemblages recovered from intact buried contexts. Recent excavations at the Cooper's Ferry site, located in western Idaho, revealed a stratified series of WST components spanning the late Pleistocene to early Holocene periods. The study of these components offers a unique opportunity to evaluate current expectations about WST lithic technology. Here, we describe the discovery, context, and contents of a new cache of 14 WST projectile points from the Cooper's Ferry site that provide clues about WST lithic reduction patterns and the design of early stemmed projectile points. We employ several novel methods of lithic analysis based on three-dimensional digital scanning technology and geometric morphometry and, in doing so, seek to demonstrate new ways of studying stone tools through the use of next-generation methods of lithic analysis applied to exploring the poorly known technological details of the WST.

En el oeste de Norteamérica, la tradición de tallo occidental (Western Stemmed Tradition o WST) es contemporánea, pero tecnológicamente distinta, de la tradición paleoindia Clovis como fue inicialmente definida en las Grandes Llanuras y el suroeste de los Estados Unidos. Los principios fundamentales de la tecnología lítica de la WST no han sido definidos al mismo nivel que sus contrapartes tecnológicas de la tradición paleoindia acanalada debido a la escasez de extensos conjuntos líticos de la WST recuperados en contextos primarios. Excavaciones recientes en el sitio de Cooper's Ferry, ubicado en el oeste del estado de Idaho, han revelado una serie estratificada de componentes de la WST que abarca desde el Pleistoceno tardío hasta el Holoceno temprano. El estudio de estos componentes ofrece una oportunidad única para evaluar las expectativas actuales sobre la tecnología lítica de la WST. Aquí presentamos los detalles del descubrimiento, contexto y contenido de un nuevo escondite de 14 puntas de proyectil del tipo WST en el sitio de Cooper's Ferry. Estas proporcionan evidencias sobre los patrones de reducción lítica de la WST y el diseño de puntas de proyectil tempranas. Empleamos varios métodos novedosos de análisis lítico basados en la tecnología de escaneo digital tridimensional y la morfometría geométrica, con el fin de demonstrar nuevas formas de estudiar las herramientas de piedra a través de la aplicación de métodos de análisis lítico de nueva generación para explorar los detalles tecnológicos menos conocidos de la WST.

Type
Reports
Copyright
Copyright © 2017 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adams, Dean C., and Otárola-Castillo, Erik 2013 Geomorph: An R Package for the Collection and Analysis of Geometric Morphometric Shape Data. Methods in Ecology and Evolution 4:393399.Google Scholar
Andrefsky, William Jr. 2006 Lithics: Macroscopic Approaches to Analysis. 2nd ed. Cambridge University Press, Cambridge.Google Scholar
Ballenger, Jesse A.M. 2001 Dalton Settlement in the Arkoma Basin of Eastern Oklahoma. Monographs in Anthropology No. 2. Sam Noble Oklahoma Museum of Natural History, Norman.Google Scholar
Beck, Charlotte, and George, T. Jones 1997 The Terminal Pleistocene/Early Holocene Archaeology of the Great Basin. Journal of World Prehistory 11:161236.Google Scholar
Beck, Charlotte, and George, T. Jones 2007 Early Paleoarchaic Morphology and Chronology. In Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene–Holocene Transition, edited by Graf, Kelly E. and Schmitt, Dave N., pp. 2341. University of Utah Press, Salt Lake City.Google Scholar
Beck, Charlotte, and George, T. Jones 2009 Projectile Points. In The Archaeology of the Eastern Nevada Paleoarchaic, Pt. I: The Sunshine Locality, edited by Beck, Charlotte and Jones, George T., pp. 145217. Anthropological Papers No. 126. University of Utah, Salt Lake City.Google Scholar
Beck, Charlotte, and George, T. Jones 2010 Clovis and Western Stemmed: Population Migration and the Meeting of Two Technologies in the Intermountain West. American Antiquity 75:81116.CrossRefGoogle Scholar
Birkeland, Peter W. 1984 Soils and Geomorphology. Third edition. Oxford University Press, Oxford.Google Scholar
Bradbury, Andrew P., and Carr, Phillip J. 2003 A Method for Quantifying Size and Shape of Hafted Bifaces. In Lithic Analysis at the Millennium, edited by Moloney, Norah and Shott, Michael J., pp. 173188. Institute of London, University College, London.Google Scholar
Bradley, Bruce A., Collins, Michael B., and Hemmings, Andrew 2010 Clovis Technology. International Monographs in Prehistory, Volume 17. Ann Arbor.Google Scholar
Bryan, Alan L. 1980 The Stemmed Point Tradition: An Early Technological Tradition in Western North America. In Anthropological Papers in Memory of Earl H. Swanson, Jr., edited by Harten, L., Warren, Claude, and Tuohy, Don, pp. 77107. Special Publication of the Idaho State University Museum of Natural History, Pocatello.Google Scholar
Bryan, Alan L. 1988 The Relationship of the Stemmed Point and Fluted Point Traditions in the Great Basin. In Early Human Occupation in Far Western North America: The Clovis–Archaic Interface, edited by Judith, A. Willig, C. Aikens, Melvin, and Fagan, John L., pp. 5374. Anthropological Papers No. 21. Nevada State Museum, Carson City.Google Scholar
Buchannan, Briggs 2006 An Analysis of Folsom Projectile Point Resharpening Using Quantitative Comparisons of Form and Allometry. Journal of Archaeological Science 33:185199.Google Scholar
Buchanan, Briggs, and Collard, Mark 2007 Investigating the Peopling of North America Through Cladistic Analyses of Early Paleoindian Projectile Points. Journal of Anthropological Archaeology 26:366393.CrossRefGoogle Scholar
Buchanan, Briggs, and Collard, Mark 2010 A Geometric Morphometrics-Based Assessment of Blade Shape Differences Among Paleoindian Projectile Point Types from Western North America. Journal of Archaeological Science 37:350359.CrossRefGoogle Scholar
Butler, B. Robert 1969 The Earlier Cultural Remains at Cooper's Ferry. Tebiwa 12:3550.Google Scholar
Cheshire, Joseph, and Kelly, Robert L. 2006 Projectile Point Shape and Durability: The Effect of Thickness:Length. American Antiquity 71:353363.CrossRefGoogle Scholar
Clarkson, Chris 2013 Measuring Core Reduction Using 3D Flake Scar Density: A Test Case of Changing Core Reduction at Klasies River Mouth, South Africa. Journal of Archaeological Science 40:43484357.CrossRefGoogle Scholar
Clarkson, Chris, and Hiscock, Peter 2011 Estimating Original Flake Mass From 3D Scans of Platform Area. Journal of Archaeological Science 35:10621068.Google Scholar
Collins, Michael B. 2010 Clovis Blade Technology: A Comparative Study of the Keven Davis Cache, Texas. University of Texas Press, Austin.Google Scholar
Davis, Loren G., Bean, Daniel W., Nyers, Alexander J., and Brauner, David R. 2015 GLiMR: A GIS-Based Method for the Geometric Morphometric Analysis of Artifacts. Lithic Technology 40:199217.Google Scholar
Davis, Loren G., Nyers, Alex J., and Willis, Samuel C. 2014 Context, Provenance and Technology of a Western Stemmed Tradition Artifact Cache From the Cooper's Ferry Site, Idaho. American Antiquity 79:596615.Google Scholar
Davis, Loren G., and Schweger, Charles E. 2004 Geoarchaeological Context of Late Pleistocene and Early Holocene Occupation at the Cooper's Ferry Site, Western Idaho, USA. Geoarchaeology: An International Journal 19:685704.Google Scholar
Davis, Loren G., Willis, Samuel C., and Macfarlan, Shane J. 2012 Lithic Technology, Cultural Transmission, and the Nature of the Far Western Paleoarchaic-Paleoindian Co-Tradition. In Meetings at the Margins: Prehistoric Cultural Interactions in the Intermountain West, edited by Rhode, David, pp. 4764. University of Utah Press, Salt Lake City.Google Scholar
Ellis, Christopher 1997 Factors Influencing the Use of Stone Projectile Tips: An Ethnographic Perspective. In Projectile Technology, edited by Knecht, Heidi, pp. 3774. Plenum Press, New York.Google Scholar
Eren, Metin I., and Andrews, Brian N. 2013 Were Bifaces Used as Mobile Cores by Clovis Foragers in the North American Lower Great Lakes Region? An Archaeological Test of Experimentally Derived Quantitative Predictions. American Antiquity 78:166180.Google Scholar
Flenniken, J. Jeffrey 1985 Stone Tool Reduction Techniques as Cultural Markers. In Stone Tool Analysis: Essays in Honor of Don E. Crabtree, edited by Plew, Mark G., Woods, James C., and Pavesic, Max G., pp. 265276. University of New Mexico Press, Albuquerque.Google Scholar
Flenniken, Jeffrey J., and Raymond, Anan W. 1986 Morphological Projectile Point Typology: Replication, Experimentation, and Technological Analysis. American Antiquity 51:603614.CrossRefGoogle Scholar
Frison, George C. 1989 Experimental Use of Clovis Weaponry and Tools on African Elephants. American Antiquity 54:766784.Google Scholar
Gough, Stan, and Galm, Jerry R. 2002 Bone Technology at the Sentinel Gap Site. Current Research in the Pleistocene 19:2729.Google Scholar
Gunn, Joel, and Prewitt, Elton R. 1975 Automatic Classification: Projectile Points from West Texas. Plains Anthropologist 20:139150.Google Scholar
Gunz, Phillip, and Mitteroecker, Phillipp 2013 Semilandmarks: A Method for Quantifying Curves and Surfaces. Hystrix, the Italian Journal of Mammology 24 (1):103109.Google Scholar
Henton, Gregory H., and Durand, Stephen R. 1991 Projectile Point Measurement and Classification Using Digital Image Processing. Journal of Quantitative Anthropology 3:5382.Google Scholar
Holcomb, Justin A. 2014 Expanding the Chemostratigraphic Framework of the Cooper's Ferry Site (10IH73) Using Portable X-Ray Fluorescence Spectrometry. Master's thesis, Department of Anthropology, Oregon State University, Corvallis.Google Scholar
Huckell, Bruce B., and David Kilby, J. 2014 Clovis Caches: Recent Discoveries and New Research. University of New Mexico Press, Albuquerque.Google Scholar
Jennings, Jesse D. 1957 Danger Cave. Anthropological Papers 27. University of Utah, Salt Lake City.Google Scholar
Jennings, Jesse D. 1964 The Desert West. In Prehistoric Man in the New World, edited by Jennings, Jesse D. and Norbeck, Edward, pp. 149174. University of Chicago Press, Chicago.Google Scholar
Jenkins, Dennis L., Davis, Loren G., Stafford, Thomas W. Jr., Campos, Paula F., Hockett, Bryan, Jones, George T., Cummings, Linda Scott, Yost, Chad, Connolly, Thomas J., Yohe II, Robert M., Gibbons, Summer C., Raghavan, Maanasa, Rasmussen, Morten, Paijmans, Johanna L. A., Hofreiter, Michael, Kemp, Brian M., Barta, Jodi Lynn, Monroe, Cara, Gilbert, M. Thomas P., Willerslev, Eske 2012 Clovis Age Western Stemmed Projectile Points and Human Coprolites at the Paisley Caves. Science 337:223228.Google Scholar
Keeley, Lawrence H. 1982 Hafting and Retooling: Effects on the Archaeological Record. American Antiquity 37:798809.Google Scholar
Kilby, J. David, and Huckell, Bruce B. 2013 Clovis Caches: Current Perspectives and Future Directions. In Paleoamerican Odyssey, edited by Graf, Kelly E., Ketron, Caroline V., and Waters, Michael R., pp. 257272. Center for the Study of the First Americans, College Station, Texas.Google Scholar
Lycett, Stephen J., and Cramon-Taubadel, Noreen von 2013 A 3D Morphometric Analysis of Surface Geometry in Levallois Cores: Patterns of Stability and Variability across Regions and Their Implications. Journal of Archaeological Science 40:15081517.Google Scholar
Musil, Robert R. 1988 Functional Efficiency and Technological Change: A Hafting Tradition Model for Prehistoric North America. In Early Human Occupation in Far Western North America: The Clovis Archaic Interface, edited by Aikens, C. Melvin, Willig, Judith A., and Fagan, John F., pp. 373387. Anthropological Papers Vol. 21. Nevada State Museum, Carson City.Google Scholar
North American Commission on Stratigraphic Nomenclature (NACOSN) 1983 North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin, 67:841875.Google Scholar
Odell, George H., and Cowan, Frank 1986 Experiments with Spears and Arrows on Animal Targets. Journal of Field Archaeology 13:195212.Google Scholar
Shott, Michael J. 1996 An Exegesis of the Curation Concept. Journal of Anthropological Research 52:259280.Google Scholar
Shott, Michael J. 2014 Digitizing Archaeology: A Subtle Revolution in Analysis. World Archaeology 46:19.Google Scholar
Shott, Michael J., and Ballenger, Jesse A. M. 2007 Biface Reduction and the Measurement of Dalton Curation: A Southeastern United States Case Study. American Antiquity 72:153175.Google Scholar
Shott, Michael J., and Trail, Brian W. 2010 Exploring New Approaches to Lithic Analysis: Laser Scanning and Geometric Morphometrics. Lithic Technology 35:195220.Google Scholar
Shott, Michael J., and Trail, Brian W. 2012 New Developments in Lithic Analysis: Laser Scanning and Digital Modeling. The SAA Archaeological Record 12:1218.Google Scholar
Smallwood, Ashley W. 2012 Clovis Technology and Settlement in the American Southeast: Using Biface Analysis to Evaluate Dispersal Models. American Antiquity 77:689713.Google Scholar
Smallwood, Ashley W., and Jennings, Thomas A. (editors) 2014 Clovis: On the Edge of a New Understanding. Texas A&M University Press, College Station.Google Scholar
Soil Survey Division Staff 1993 Soil Survey Manual. U.S. Department of Agriculture Handbook No. 18. U.S. Government Printing Office, Washington, D.C. Google Scholar
Spencer, Lee 1974 Replicative Experiments in the Manufacture and Use of a Great Basin Atlatl. In Great Basin Atlatl Studies, edited by Hester, Thomas R., Mildner, Michael P. and Spencer, Lee, pp. 3760. Publications in Archaeology, Ethnology and History, Vol. 2. Ballena Press, Berkeley.Google Scholar
Thomas, David H. 1970 Archaeology's Operational Imperative: Great Basin Projectile Points as a Test Case. Archaeological Survey Annual Report 12. University of California, Los Angeles.Google Scholar
Thomas, David H. 1981 How to Classify the Projectile Points from Monitor Valley, Nevada. Journal of California and Great Basin Anthropology 3:743.Google Scholar
Titmus, Gene L., and Woods, James C. 1986 An Experimental Study of Projectile Point Fracture Patterns. Journal of California and Great Basin Anthropology 8:3749.Google Scholar
Towner, Ronald H., and Warburton, Miranda 1990 Projectile Point Rejuvenation: A Technological Analysis. Journal of Field Archaeology 17:311321.Google Scholar
Willig, Judith A. 1988 Paleo-Archaic Adaptations and Lakeside Settlement Patterns in the Northern Alkali Basin. In Early Human Occupation in Far Western North America: The Clovis-Archaic Interface, edited by Willig, Judith A., Aikens, C. Melvin, and Fagan, John L., pp. 417482. Anthropological Papers No. 21. Nevada State Museum, Carson City.Google Scholar
Zeanah, David W., and Elston, Robert G. 2001 Testing a Simple Hypothesis Concerning the Resilience of Dart Point Styles to Hafting Element Repair. Journal of California and Great Basin Anthropology 23:93124.Google Scholar
Supplementary material: File

Davis supplementary material

Davis supplementary material 1

Download Davis supplementary material(File)
File 180.4 KB
Supplementary material: Image

Davis supplementary material

Figure S1

Download Davis supplementary material(Image)
Image 1.5 MB
Supplementary material: Image

Davis supplementary material

Figure S2

Download Davis supplementary material(Image)
Image 836.5 KB
Supplementary material: Image

Davis supplementary material

Figure S3

Download Davis supplementary material(Image)
Image 254.7 KB
Supplementary material: File

Davis supplementary material

Table S1

Download Davis supplementary material(File)
File 58.7 KB
Supplementary material: Image

Davis supplementary material

Figure S4

Download Davis supplementary material(Image)
Image 573.5 KB
Supplementary material: File

Davis supplementary material

Table S2

Download Davis supplementary material(File)
File 150.1 KB
Supplementary material: File

Davis supplementary material

Table S3

Download Davis supplementary material(File)
File 115 KB
Supplementary material: File

Davis supplementary material

Table S4

Download Davis supplementary material(File)
File 140.5 KB
Supplementary material: File

Davis supplementary material

Table S5

Download Davis supplementary material(File)
File 132.7 KB
Supplementary material: File

Davis supplementary material

Table S6

Download Davis supplementary material(File)
File 102.2 KB
Supplementary material: File

Davis supplementary material

Table S7

Download Davis supplementary material(File)
File 104.3 KB
Supplementary material: File

Davis supplementary material

Table S8

Download Davis supplementary material(File)
File 116.9 KB
Supplementary material: File

Davis supplementary material

Table S9

Download Davis supplementary material(File)
File 108.6 KB
Supplementary material: File

Davis supplementary material

Table S10

Download Davis supplementary material(File)
File 120.8 KB
Supplementary material: File

Davis supplementary material

Table S11

Download Davis supplementary material(File)
File 120.2 KB
Supplementary material: File

Davis supplementary material

Table S12

Download Davis supplementary material(File)
File 117.7 KB
Supplementary material: File

Davis supplementary material

Table S13

Download Davis supplementary material(File)
File 119.1 KB
Supplementary material: File

Davis supplementary material

Table S14

Download Davis supplementary material(File)
File 75 KB
Supplementary material: Image

Davis supplementary material

Davis supplementary material 2

Download Davis supplementary material(Image)
Image 2.4 MB