Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-03T01:19:40.837Z Has data issue: false hasContentIssue false

Comparison of three systems for predicting the digestible energy value of natural grassland and lucerne hays for horses

Published online by Cambridge University Press:  26 December 2019

W. Martin-Rosset*
Affiliation:
VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, INRAE, F-63122 Saint-Genès-Champanelle, France
D. Andueza
Affiliation:
VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, INRAE, F-63122 Saint-Genès-Champanelle, France
M. Vermorel
Affiliation:
VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, INRAE, F-63122 Saint-Genès-Champanelle, France
Get access

Abstract

The accuracy and precision of the National Research Council (NRC), Gesellschaft für Ernährungsphysiologie (GfE) and Institut National de la Recherche Agronomique (INRA) systems for predicting the digestible energy (DE) value of hays were determined from the results of 15 digestibility trials with natural grassland hays and 9 digestibility trials with lucerne hays that all met strict experimental and a tight corpus of methods. The hays were harvested in the temperate zone. They covered broad ranges of chemical composition and DE value. The INRA system was more accurate than the other two systems, with the bias between the predicted and measured DE values of natural grassland and lucerne hays averaging −0.11 and −0.04 MJ/kg DM with the INRA system, 0.34 and −0.70 MJ/kg DM with the NRC system and −0.50 and −1.69 MJ/kg DM with the GfE system (P < 0.05). However, the precision of the three systems was similar; the standard error of prediction corrected by bias was not significantly different (P > 0.05). The GfE system underestimated the DE value of hays, especially of lucerne hays. The differences between the predicted and measured DE values resulted mainly from the errors in the prediction of organic matter digestibility and energy digestibility for both natural grassland and lucerne hays. Discrimination according to botanical family (grassland v. lucerne) can help improve the prediction of the DE value of hays. The choice of appropriate predictive variables is discussed in the light of differences in chemical composition and digestibility of the various cell wall components of grassland and lucerne hays. Neutral detergent fiber (NDF) may thus be preferable to ADF in the prediction equation of the DE value of lucerne hays, whereas ADF and NDF may both be relevant for natural grassland hays.

Type
Research Article
Copyright
© The Animal Consortium 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andueza, D, Rodrigues, AM, Picard, F, Rossignol, N, Baumont, R, Cecato, U and Farruggia, A 2016. Relationship between botanical composition, biomass and feed value of forage issued from permanent grasslands over the first growth cycle. Grass and Forage Science 71, 366378.CrossRefGoogle Scholar
Centraal Veevoerderbureau (CVB) 1996. Documentatertierapport n 15, Het Definitieve VEP-en VREp-systeem the definive Dutch Equine Energy and Protein system. Centraal veevoerderbureau, Lelystadt, the Netherlands.Google Scholar
Colburn, MW and Evans, JL 1967. Chemical composition of cell-wall constituent and acid detergent fiber fractions of forages. Journal of Dairy Science 50, 11301135.CrossRefGoogle Scholar
Cymbaluk, NF 1990. Comparison of forage digestion by cattle and horses. Canadian Journal of Animal Science 70, 601610.CrossRefGoogle Scholar
de Marco, M, Miraglia, N, Peiretti, PG and Bergero, D 2011. Apparent digestibility of wheat bran and extruded flax in horses determined from the total collection of feces and acid-insoluble ash as an internal marker. Animal 6, 227231.CrossRefGoogle Scholar
Fearn, T 1996. Comparing standard deviations. NIRS News 7, 56.CrossRefGoogle Scholar
Fingerling, G 1931–1939. Cited from Fingerling G 1953. Der Erhaltungsbedarf der Pferde. In Untersuchungen über den Futterwertt verschiedener Futtermittel. Arbeiten aus dem Nachlaß von Kellner O. und G. Fingerling. (ed K Nehring and A Werner), Festschrift anlässlich des 100 jährigne Bestehens der Landwirtschaftlichen Versuchsstation Leipzig-M.öckern. Band 1, pp. 327334.Google Scholar
Fonnesbeck, PV 1968. Digestion of soluble and fibrous carbohydrate of forages by horses. Journal of Animal Science 27, 13361344.CrossRefGoogle Scholar
Fonnesbeck, PV 1969. Partitioning of the nutrients of forage for horses. Journal of Animal Science 28, 624633.CrossRefGoogle ScholarPubMed
Fonnesbeck, PV, Lydman, RK, Vander Nout, GW and Symons, LD 1967. Digestibility of the proximate nutrients of forages by horses. Journal of Animal Science 26, 10391045.CrossRefGoogle Scholar
Geslleschaft für Ernährungsphisiologie (GfE) 2014. Emphelungen zur energie- und Närhstoffersorgung von Pferden. DLG Verlag GmbH, Frankfurt am Main, Deutschland.Google Scholar
Goering, HK and Van Soest, PJ 1970. Forage fiber analyses apparatus, reagents, procedures, and some applications. USDA-ARS. Agricultural Handbook No. 379, pp. 120. US Government Printing Office, Washington, DC, USAGoogle Scholar
Hoffmann, L, Klippel, W and Schiemann, R 1967. Untersuchungen über den Energieumsatz beim Pferd unter besonderer Berücksichtigung der Horizontal bewegung. Archiv für Tierernaehrung 17, 441449.CrossRefGoogle Scholar
Institut National Recherche Agronomique (INRA) 1984. Le cheval (eds. Jarrige, R and Martin-Rosset, W). INRA Editions, Versailles, France.Google Scholar
Institut National Recherche Agronomique (INRA) 2015. Equine nutrition, INRA nutrient requirements, recommended allowances and feed tables (ed. Martin-Rosset, W). Wageningen Academic publishers, Wageningen, The Netherlands.CrossRefGoogle Scholar
Kienzle, E and Zeyner, A 2010. The development of a metabolizable energy system for horses. Journal of Animal Physiology and Nutrition 94, e231e240.CrossRefGoogle ScholarPubMed
Leroy, AM and François, A 1952. Le dosage des acides gras fixes et des substances insaponifiables des végétaux. Etude de la composition de quelques aliments des animaux. Annales de Zootechnie 1, 5159.CrossRefGoogle Scholar
Lucas, HL Jr, Smart, WWG, Cipollini, MA Jr and Gross, HD 1961. Relations between digestibility and composition of feeds and foods. S-45 Report, North Carolina State College, Raleigh, NC, USA.Google Scholar
Martin-Rosset, W, Andrieu, J, Jestin, M, Macheboeuf, D and Andueza, D 2012. Prediction of organic matter digestibility of forages in horses using different chemical, biological and physical methods. In Forages and grazing in horse nutrition (eds. Saastamoinen, M, Fradinho, MJSantos, AS and Miraglia, N), pp. 8696. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Martin-Rosset, W, Andrieu, J, Vermorel, M and Dulphy, JP 1984. Valeur des aliments pour le cheval. In Le cheval (eds. Jarrige, R and Martin-Rosset, W), pp. 209238. INRA Editions, Versailles, France.Google Scholar
Martin-Rosset, W and Dulphy, JP 1987. Digestibility interactions between forages and concentrates in horses: influence of feeding level – Comparison with sheep. Livestock Production Science 17, 263276.CrossRefGoogle Scholar
National Research Council (NRC) 1973. Nutrient requirements of horses, 3rd revised edition. National Academy Press, Washington, DC, USA.Google Scholar
National Research Council (NRC) 2007. Nutrient requirements of horses, 6th revised edition. National Academy Press, Washington, DC, USAGoogle Scholar
Olsson, N 1949. The relation between the organic nutrients of rations and their digestibility in horses. The Annals of the Royal Agriculture College of Sweden 16, 644669.Google Scholar
Palmgreen-Karlsson, C, Lindberg, JE and Rundgren, M 2000. Associative effects on total tract digestibility in horses fed different ratios of grass hay and while oats. Livestock Production Science 65, 143153.CrossRefGoogle Scholar
SAS 1998. SAS SAS/STAT users guide, version 6.12. Statistical Analysis System Institute, Cary, NC, USA.Google Scholar
Schaafstra, FJWC, Van Doorn, D, Schoneville, JT, Wartena, FC, Zoom, MV, Blok, MC and Hendriks, WH 2015. Evaluation of methodological aspects of digestibility measurements in ponies fed different grass hays. Journal of Animal Science 93, 47424749.CrossRefGoogle ScholarPubMed
Smolders, E AA, Steg, A and Hindle, VA 1990. Organic matter digestibility in horses and its prediction. Netherlands Journal of Agricultural Science 38, 435447.Google Scholar
Somogyi, M 1952. Notes on sugar determination. Journal of Biological Chemistry 195, 1923.Google Scholar
Todd, LK 1986. Studies on digestion of nutrients and rate of passage in the horse. MSc thesis, University of Alberta, Edmonton, Canada.Google Scholar
Van Soest, PJ 1963. The use of detergents in the analysis of fibrous feeds: II a rapid method for determination of fiber and lignin. Journal of Association of Analytical Chemist (AOAC) 46, 829.Google Scholar
Van Soest, PJ 1967. Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science 26, 119128.CrossRefGoogle Scholar
Van Soest, PJ 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell University Press, Ithaca, NY, USA.Google Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Van Soest, PJ and Wine, RH 1967. Use of detergent in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemist 50, 5055.Google Scholar
Zeyner, A 1995. Emittlung des Gehaltes an verdaulicher Energie im Pferdefutter über die verdaulichkeitsschätzung. Übersichten Tierernärhung, 23, 55104.Google Scholar
Zeyner, A and Kienzle, H 2002. A method to estimate digestible energy in horse feed. Journal of Nutrition 132, 1771S1773S.CrossRefGoogle ScholarPubMed