Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T23:40:27.936Z Has data issue: false hasContentIssue false

Detecting QTL for feed intake traits and other performance traits in growing pigs in a Piétrain–Large White backcross

Published online by Cambridge University Press:  04 March 2010

H. Gilbert*
Affiliation:
INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-75231, Paris 05, France
J. Riquet
Affiliation:
INRA, UMR444 Génétique Cellulaire, Auzeville, BP52627, F-31326 Castanet-Tolosan, France
J. Gruand
Affiliation:
INRA, UE967 Génétique Expérimentale en Productions Animales, F-17700 Surgères, France
Y. Billon
Affiliation:
INRA, UE967 Génétique Expérimentale en Productions Animales, F-17700 Surgères, France
K. Fève
Affiliation:
INRA, UMR444 Génétique Cellulaire, Auzeville, BP52627, F-31326 Castanet-Tolosan, France
P. Sellier
Affiliation:
INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-75231, Paris 05, France
J. Noblet
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint Gilles, France
J. P. Bidanel
Affiliation:
INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-75231, Paris 05, France
Get access

Abstract

Knowing the large difference in daily feed intake (DFI) between Large White (LW) and Piétrain (PI) growing pigs, a backcross (BC) population has been set up to map QTL that could be used in marker assisted selection strategies. LW × PI boars were mated with sows from two LW lines to produce 16 sire families. A total of 717 BC progeny were fed ad libitum from 30 to 108 kg BW using single-place electronic feeders. A genome scan was conducted using genotypes for the halothane gene and 118 microsatellite markers spread on the 18 porcine autosomes. Interval mapping analyses were carried out, assuming different QTL alleles between sire families to account for within breed variability using the QTLMap software. The effects of the halothane genotype and of the dam line on the QTL effect estimates were tested. One QTL for DFI (P < 0.05 at the chromosome-wide (CW) level) and one QTL for feed conversion ratio (P < 0.01 at the CW level) were mapped to chromosomes SSC6 – probably due to the halothane alleles – and SSC7, respectively. Three putative QTL for feed intake traits were detected (P < 0.06 at the CW level) on SSC2, SSC7 and SSC9. QTL on feeding traits had effects in the range of 0.20 phenotypic s.d. The relatively low number of QTL detected for these traits suggests a large QTL allele variability within breeds and/or low effects of individual loci. Significant QTL were detected for traits related to carcass composition on chromosomes SSC6, SSC15 and SSC17, and to meat quality on chromosome SSC6 (P < 0.01 at the genome-wide level). QTL effects for body composition on SSC13 and SSC17 differed according to the LW dam line, which confirmed that QTL alleles were segregating in the LW breed. An epistatic effect involving the halothane locus and a QTL for loin weight on SSC7 was identified, the estimated substitution effects for the QTL differing by 200 g between Nn and NN individuals. The interactions between QTL alleles and genetic background or particular genes suggest further work to validate QTL segregations in the populations where marker assisted selection for the QTL would be applied.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson-Eklund, L, Uhlhorn, H, Lundeheim, N, Dalin, G, Andersson, L 2000. Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar × Large White intercross. Genetical Research 75, 223230.CrossRefGoogle Scholar
Archer, JA, Richardson, EC, Herd, RM, Arthur, PF 1999. Potential for selection to improve efficiency of feed use in beef cattle: a review. Australian Journal of Agricultural Research 50, 147151.CrossRefGoogle Scholar
Beeckmann, P, Moser, G, Bartenschlager, H, Reiner, G, Geldermann, H 2003. Linkage and QTL mapping for Sus scrofa chromosome 8. Journal of Animal Breeding and Genetics 120 (suppl. 1), 6673.CrossRefGoogle Scholar
Bidanel, JP, Rothschild, M 2002. Current status of quantitative trait locus mapping in pigs. Pig News and Information 23, 39N53N.Google Scholar
Cai, W, Casey, DS, Dekkers, JCM 2008. Selection response and genetic parameters for residual feed intake in Yorkshire swine. Journal of Animal Science 86, 287298.CrossRefGoogle ScholarPubMed
Cepica, S, Schröffel, J Jr, Stratil, A, Hojny, J, Pierzchala, M, Kuryl, J, Brunsch, C, Sternstein, I, Davoli, R, Fontanesi, L, Reiner, G, Bartenschlager, H, Moser, G, Geldermann, H 2003. Linkage and QTL mapping for Sus scrofa chromosome 9. Journal of Animal Breeding and Genetics 120 (suppl. 1), 7481.CrossRefGoogle Scholar
Duthie, C, Simm, G, Doeschl-Wilson, A, Kalm, E, Knap, PW, Roehe, R 2008. Quantitave trait loci for chemical body composition traits in pigs and their positional associations with body tissues, growth and feed intake. Animal Genetics 39, 130140.CrossRefGoogle Scholar
Edwards, DB, Ernst, CW, Tempelman, RJ, Rosa, GJM, Raney, NE, Hoge, MD, Bates, RO 2008. Quantitative trait loci mapping in an F2 Duroc × Pietrain resource population: I. Growth traits. Journal of Animal Science 86, 241253.CrossRefGoogle Scholar
Elsen, JM, Mangin, B, Goffinet, B, Boichard, D, Le Roy, P 1999. Alternative models for QTL detection in livestock. I. General introduction. Genetics Selection Evolution 31, 213224.CrossRefGoogle Scholar
Fan, B, Glenn, KL, Geiger, B, Mileham, A, Rothschild, MF 2008. Investigation of QTL regions on chromosome 17 for genes associated with meat colour in the pig. Journal of Animal Breeding and Genetics 125, 240247.CrossRefGoogle ScholarPubMed
Fujii, J, Otsu, K, Zorzato, F, de Leon, S, Khanna, VK, Weiler, JE, O’Brien, PJ, MacLennan, DH 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448451.CrossRefGoogle ScholarPubMed
Geldermann, H, Müller, E, Moser, G, Reiner, G, Bartenschlager, H, Cepica, S, Stratil, A, Kuryl, J, Moran, C, Davoli, R, Brunsch, C 2003. Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. Journal of Animal Breeding and Genetics 120, 363393.CrossRefGoogle Scholar
Gilbert, H, Bidanel, JP, Gruand, J, Caritez, JC, Billon, Y, Guillouet, P, Noblet, J, Sellier, P 2007. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. Journal of Animal Science 85, 31823188.CrossRefGoogle ScholarPubMed
Haley, CS, Knott, SA 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.CrossRefGoogle ScholarPubMed
Heuven, HCM, van Wijk, RHJ, Dibbits, B, van Kampen, TA, Knol, EF, Bovenhuis, H 2009. Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs. Genetics Selection Evolution 41, 4.CrossRefGoogle ScholarPubMed
Houston, RD, Haley, CS, Archibald, AL, Rance, KA 2005. A QTL affecting daily feed intake maps to Chromosome 2 in pigs. Mammalian Genome 16, 464470.CrossRefGoogle ScholarPubMed
Johnson, ZB, Chewning, JJ, Nugent, RA 1999. Genetic parameters for production traits and measures of residual feed intake in Large White swine. Journal of Animal Science 77, 16791685.CrossRefGoogle ScholarPubMed
Karlskov-Mortensen, P, Bruun, CS, Braunschweig, MH, Sawera, M, Markljung, E, EnfäIt, AC, Hedebro-Velander, I, Josell, A, Lindahl, G, Lundström, K, von Seth, G, Jørgensen, CB, Andersson, L, Fredholm, M 2006. Genome-wide identification of quantitative trait loci in a cross between Hampshire and Landrace I: carcass traits. Animal Genetics 37, 156162.CrossRefGoogle Scholar
Kennedy, BW, van de Werf, JHJ, Meuwissen, THE 1993. Genetic and statistical properties of residual feed intake. Journal of Animal Science 71, 32393250.CrossRefGoogle ScholarPubMed
Kim, CW, Hong, YH, Yun, SI, Lee, SR, Kim, YH, Kim, MS, Chung, KH, Jung, WY, Kwon, EJ, Hwang, SS, Park, DH, Cho, KK, Lee, JG, Kim, BW, Kim, JW, Kang, YS, Yeo, JS, Chang, KT 2006. Use of microsatellite markers to detect quantitative trait loci in Yorkshire pigs. Journal of Reproduction and Development 52, 229237.CrossRefGoogle ScholarPubMed
Kim, KS, Larsen, N, Short, T, Plastow, G, Rothschild, MF 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome 11, 131135.CrossRefGoogle ScholarPubMed
Kuryl, J, Pierzchala, M, Hojny, J, Reiner, G, Bartenschlager, H, Moser, G, Geldermann, H 2003. Linkage and QTL mapping for Sus scrofa chromosome 15. Journal of Animal Breeding and Genetics 120 (suppl. 1), 119125.CrossRefGoogle Scholar
Labroue, F, Guéblez, R, Meunier-Salaün, MC, Sellier, P 1999. Feed intake behaviour of group-housed Piétrain and Large White growing pigs. Annales de Zootechnie 48, 247261.CrossRefGoogle Scholar
Labroue, F, Guéblez, R, Sellier, P, Meunier-Salaün, MC 1994. Feeding behaviour of group-housed Large White and Landrace pigs in French central test stations. Livestock Production Science 40, 303312.CrossRefGoogle Scholar
Larzul, C, Le Roy, P, Guéblez, R, Talmant, A, Gogué, J, Sellier, P, Monin, G 1997. Effect of halothane genotype (NN, Nn, nn) on growth, carcass and meat quality traits of pigs slaughtered at 95 or 125 kg live weight. Journal of Animal Breeding and Genetics 114, 309320.CrossRefGoogle ScholarPubMed
Laville, E, Sayd, T, Terlouw, C, Blinet, S, Pinguet, J, Fillaut, M, Glénisson, J, Chérel, P 2009. Differences in pig muscle proteome according to HAL genotype: implications for meat quality defects. Journal of Agricultural and Food Chemistry 57, 49134923.CrossRefGoogle ScholarPubMed
Leach, LM, Ellis, M, Sutton, DS, McKeith, FK, Wilson, ER 1996. The growth performance, carcass characteristics, and meat quality of halothane carrier and negative pigs. Journal of Animal Science 74, 934943.CrossRefGoogle ScholarPubMed
Lecomte, L, Duffé, P, Buret, M, Servin, B, Hospital, F, Causse, M 2004. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theoretical and Applied Genetics 109, 658668.CrossRefGoogle ScholarPubMed
Lee, SS, Chen, Y, Moran, C, Stratil, A, Reiner, G, Bartenschlager, H, Moser, G, Geldermann, H 2003. Linkage and QTL mapping for Sus scrofa chromosome 5. Journal of Animal Breeding and Genetics 120 (suppl. 1), 3844.CrossRefGoogle Scholar
Le Roy, P, Moreno, C, Elsen, JM, Caritez, JC, Billon, Y, Lagant, H, Talmant, A, Vernin, P, Amigues, Y, Sellier, P, Monin, G 2000. Interactive effects of the HAL and RN genes on carcass quality traits in pigs: preliminary results. In EAAP Publication No 100: quality of meat and fat in pigs as affected by genetics and nutrition (ed C Wenk, JA Fernandez and M Dupuis), pp. 139142. Wageningen Pers, Wageningen, The Netherlands.Google Scholar
Milan, D, Jeon, JT, Looft, C, Amarger, V, Robic, A, Thelander, M, Rogel-Gaillard, C, Paul, S, Iannuccelli, N, Rask, L, Ronne, H, Lundström, K, Reinsch, N, Gellin, J, Kalm, E, Le Roy, P, Chardon, P, Andersson, L 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288, 12481251.CrossRefGoogle ScholarPubMed
Mohrmann, M, Roehe, R, Knap, PW, Plastow, GS, Kalm, E 2006. Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa. Animal Genetics 37, 435443.CrossRefGoogle ScholarPubMed
Moreau, L, Charcosset, A, Gallais, A 2004. Use of trial clustering to study QTL*environment effects for grain yield and related traits in maize. Theoretical Applied Genetics 110, 92105.CrossRefGoogle Scholar
Nezer, C, Moreau, L, Wagenaar, D, Georges, M 2002. Results of a whole genome scan targeting QTL for growth and carcass traits in a Pietran × Large White intercross. Genetics Selection Evolution 34, 371387.CrossRefGoogle Scholar
Noblet, J, Karege, C, Dubois, S, van Milgen, J 1999. Metabolic utilisation of energy and maintenance requirements in growing pigs: effect of sex and genotype. Journal of Animal Science 77, 12081216.CrossRefGoogle ScholarPubMed
Pierzchala, M, Cieslak, D, Reiner, G, Bartenschlager, H, Moser, G, Geldermann, H 2003. Linkage and QTL mapping for Sus scrofa chromosome 17. Journal of Animal Breeding and Genetics 120 (suppl. 1), 132137.CrossRefGoogle Scholar
Thaller, G, Dempfle, L, Schlecht, A, Wiedemann, S, Eichinger, H, Fries, R 2000. Effect of the MHS locus on growth, carcass and meat quality traits in F2 crosses between Mangalitza and Piétrain breeds. Archiv für Tierzucht 43, 263275.Google Scholar
Tor, M, Estany, J, Villalba, D, Cubilo, D, Tibau, J, Soler, J, Sanchez, A, Noguera, JL 2001. A within-breed comparison of RYR1 pig genotypes for performance, feeding behaviour, and carcass, meat and fat quality traits. Journal of Animal Breeding and Genetics 118, 417427.CrossRefGoogle Scholar
Tribout, T, Bidanel, JP 2000. Genetic parameters of meat quality traits recorded on Large White and French Landrace station-tested pigs in France. In EAAP Publication No 100: quality of meat and fat in pigs as affected by genetics and nutrition (ed C Wenk, JA Fernandez and M Dupuis), pp. 3741. Wageningen Pers, Wageningen, The Netherlands.Google Scholar
Van Laere, AS, Nguyen, M, Braunschweig, M, Nezer, C, Collette, C, Moreau, L, Archibald, AL, Haley, CS, Buys, N, Tally, M, Andersson, G, Georges, M, Andersson, L 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832836.CrossRefGoogle Scholar