Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T23:33:50.338Z Has data issue: false hasContentIssue false

Genetic parameters and direct, maternal and heterosis effects on litter size in a diallel cross among three commercial varieties of Iberian pig

Published online by Cambridge University Press:  04 June 2019

J. L. Noguera
Affiliation:
Genètica i Milllora Animal, IRTA, Avinguda Alcalde Rovira Roure, 191, 25198 Lleida, Spain
N. Ibáñez-Escriche
Affiliation:
Departament de Ciència Animal, Universitat Politècnica de València, 46071 València, Spain
J. Casellas
Affiliation:
Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
J. P. Rosas
Affiliation:
Programa de Mejora Genética “CASTÚA”, INGA FOOD S.A. (Nutreco Group), C./ Av. de la Rúa, 2, 06200 Almendralejo, Badajoz, Spain
L. Varona*
Affiliation:
Unidad de Genética Cuantitativa y Mejora Animal, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
Get access

Abstract

The Iberian pig is one of the pig breeds that has the highest meat quality. Traditionally, producers have bred one of the available varieties, exclusively, and have not used crosses between them, which has contrasted sharply with other populations of commercial pigs for which crossbreeding has been a standard procedure. The objective of this study was to perform an experiment under full diallel design among three contemporary commercial varieties of Iberian pig and estimate the additive genetic variation and the crossbreeding effects (direct, maternal and heterosis) for prolificacy. The data set comprised 18 193 records for total number born and number born alive from 3800 sows of three varieties of the Iberian breed (Retinto, Torbiscal and Entrepelado) and their reciprocal crosses (Retinto × Torbiscal, Torbiscal × Retinto, Retinto × Entrepelado, Entrepelado × Retinto, Torbiscal × Entrepelado and Entrepelado × Torbiscal), and a pedigree of 4609 individuals. The analysis was based on a multiple population repeatability model, and we developed a model comparison test that indicated the presence of direct line, maternal and heterosis effects. The results indicated the superiorities of the direct line effect of the Retinto and the maternal effect of the Entrepelado populations. All of the potential crosses produced significant heterosis, and additive genetic variation was higher in the Entrepelado than it was in the other two populations. The recommended cross for the highest yield in prolificacy is a Retinto father and an Entrepelado mother to generate a hybrid commercial sow.

Type
Research Article
Copyright
© The Animal Consortium 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Luis Varona, Unidad de Genética Cuantitativa y Mejora Animal, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain. E-mail: lvarona@unizar.es

References

Barea, R, Nieto, R, Vitari, F, Domeneghini, C and Aguilera, JF 2011. Effects of pig genotype (Iberian v. Landrace x Large White) on nutrient digestibility, relative organ weight and small intestine structure at two stages of growth. Animal 5, 547557.CrossRefGoogle ScholarPubMed
Bidanel, JP 2011. Biology and genetics of reproduction. In The genetics of the pig, 2nd edition (ed. Rothschild, MF andRuvisnky, A), pp. 218241. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Boletín Oficial del, Estado 2014. Real Decreto 4/2014, de 10 de enero, por el que se aprueba la norma de calidad para la carne, el jamón, la paleta y la caña de lomo ibérico. BOE-A-2014-318.Google Scholar
Cameron, NM 2011. Maternal programming of reproductive function and behavior in the female rat. Frontiers in Evolutionary Neuroscience 3, 10.CrossRefGoogle ScholarPubMed
Cassady, JP, Young, LD and Leymaster, KA 2002. Heterosis and recombination effects on pig reproductive traits. Journal of Animal Science 80, 23032315.CrossRefGoogle ScholarPubMed
Coster, A, Madsen, O, Heuven, HC, Dibbits, B, Groenen, MA, van Arendonk, JA and Bovenhuis, H 2012. The imprinted gene DIO3 is a candidate gene for litter size in pigs. PLoS One 7, e31825.CrossRefGoogle ScholarPubMed
Dekkers, J, Mather, PK and Knol, EF 2011. Genetic improvement of the pig. In The genetics of the pig, 2nd edition (ed. Rothschild, MF and Ruvisnky, A), pp. 390425. CAB International, Wallingford, UK.CrossRefGoogle Scholar
Dickerson, GE 1969. Experimental approaches in utilizing breed resources. Animal Breeding Abstracts 37, 191202.Google Scholar
Fabuel, E, Barragán, C, Silió, L, Rodríguez, MC and Toro, MA 2004. Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93, 104113.CrossRefGoogle ScholarPubMed
Fernández, A, Rodrigáñez, J, Zuzúarregui, J, Rodríguez, MC and Silió, L 2008. Genetic parameters for litter size and weight at different parities in Iberian pigs. Spanish Journal of Agricultural Research 6, 98106.CrossRefGoogle Scholar
Ferraz, JBS and Johnson, RK 1993. Animal model estimation of genetic parameters and response to selection for litter size and weight, growth, and backfat in closed seedstock populations of Large White and Landrace swine. Journal of Animal Science 71, 850858.CrossRefGoogle ScholarPubMed
Gandemer, G 2009. Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: A review. Grasas y Aceites 60, 297307.Google Scholar
García-Casco, JM, Fernández, A, Rodríguez, MC and Silió, L 2012. Heterosis for litter size and growth in crosses of four strains in Iberian pig. Livestock Science 147, 18.CrossRefGoogle Scholar
García-Cortés, LA and Toro, MA 2006. Multibreed analysis by splitting the breeding values. Genetics Selection Evolution 38, 601615.Google ScholarPubMed
Gelfand, AE 1996. Model determination using sampling-based methods. In Markov chain Monte Carlo in practice (ed. Gilks, WR, Richardson, S and Spiegelhalter, DJ), pp. 145161. Chapman & Hall, New York, NY, USA.Google Scholar
Gelfand, AE and Smith, AFM 1990. Sampling-based approaches to calculating marginal densities. Journal of American Statistical Association 85, 398409.CrossRefGoogle Scholar
Haley, CS, Lee, GJ and Ritchie, M 1995. Comparative reproductive performance in Meishan and Large White pigs and their crosses. Animal Science 2, 259267.CrossRefGoogle Scholar
Hayman, BI 1954. The theory and analysis of diallel crosses. Genetics 39, 789809.Google ScholarPubMed
Hwang, JH, An, SM, Kwon, S, Park, DH, Kim, TW, Kang, DG, Yu, GE, Kim, IS, Park, HC, Ha, J and Kim, CW 2017. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta. PLoS ONE 12, e0184539.CrossRefGoogle ScholarPubMed
Ibañez-Escriche, N, Magallón, E, González, E, Tejeda, JF and Noguera, JL 2016. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. Journal of Animal Science 94, 2837.CrossRefGoogle ScholarPubMed
Irgang, R, Favero, JA and Kennedy, BW 1994. Genetic parameters for litter size of different parities in Duroc, Landrace and Large White sows. Journal of Animal Science 72, 22372246.CrossRefGoogle ScholarPubMed
Martínez, AM,Delgado, JV, Rodero, A and Vega-Pla, JL 2000. Genetic structure of the Iberian pig breed using microsatellites. Animal Genetics 31, 295301.CrossRefGoogle ScholarPubMed
Noguera, JL, Ibañez-Escriche, N, Magallón, E, Varona, L 2018. Genetic parameters and crossbreeding effects of prolificacy in three commercial lines of Iberian pigs. Proceedings of the World Congress on Genetics Applied to Livestock Production 11, 238.Google Scholar
Noguera, JL, Rodríguez, C, Varona, L, Tomás, A, Muñoz, G, Ramírez, O, Barragán, C, Arqué, M, Bidanel, JP, Amills, M, Oviló, C and Sánchez, A 2009. A bi-dimensional genome scan for prolificacy traits in pigs shows the existence of multiple epistatic QTL. BMC Genomics 10, 636.CrossRefGoogle ScholarPubMed
Ogawa, S, Konta, A, Kimata, M, Ishii, K, Uemoto, Y and Satoh, M 2019. Estimation of genetic parameters for farrowing traits in purebred Landrace and Large White pigs. Animal Science Journal 90, 2328. https://doi.org/10.1111/asj.13120.CrossRefGoogle ScholarPubMed
Pérez-Enciso, M and Gianola, D 1992. Estimates of genetic parameters for litter size in six strains of Iberian pigs. Livestock Production Science 32, 283293.CrossRefGoogle Scholar
Peripato, AC, De Brito, RA, Matioli, SR, Pletscher, LS, Vaugh, TT and Cheverud, JM 2004. Epistasis affecting litter size in mice. Journal of Evolutionary Biology 17, 593603.CrossRefGoogle ScholarPubMed
Putz, AM, Tiezzi, F, Maltecca, C, Gray, KA and Knauer, MT 2015. Variance component estimates for alternative litter size traits in swine. Journal of Animal Science 11, 51535163.CrossRefGoogle Scholar
Quaas, RL 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32, 949953.CrossRefGoogle Scholar
Quinton, VM, Wilton, JW, Robinson, JA and Mathur, PK 2006. Economic weights for sow productivity traits in nucleus pig populations. Livestock Science 99, 6977.CrossRefGoogle Scholar
Rodríguez, C, Rodrigañez, J and Silio, L 1994. Genetic analysis of maternal ability in Iberian pigs. Journal of Animal Breeding and Genetics 111, 220227.CrossRefGoogle ScholarPubMed
Serra, X, Gil, F, Pérez-Enciso, M, Oliver, MA, Vázquez, JM, Gispert, M, Díaz, I, Moreno, F, Latorre, R andNoguera, JL 1998. A comparison of carcass, meat quality and histochemical characteristics of Iberian (Guadyerbas line) and Landrace pigs. Livestock Production Science 56, 215223.CrossRefGoogle Scholar
Serrano, MP, Valencia, DG, Nieto, M, Lázaro, R and Mateos, GG 2008. Influence of sex and terminal sire line on performance and carcass and meat quality of Iberian pigs reared under intensive production systems. Meat Science 78, 420428.CrossRefGoogle ScholarPubMed
Silio, L, Rodriguez, C, Rodrigánez, J and Toro, MA 2001. La selección de cerdos ibéricos. In Porcino Ibérico: Aspectos claves (ed. Buxade, C andDaza, A), pp. 125159. Mundiprensa, Madrid, Spain.Google Scholar
Southwood, OI and Kennedy, BW 1990. Estimation of direct and maternal genetic variance for litter size in Canadian Yorkshire and Landrace swine using an animal model. Journal of Animal Science 68, 18411847.CrossRefGoogle ScholarPubMed
Spiegelhalter, DJ, Best, NG, Carlin, BP and Van der Linde, A 2002. Bayesian measures of model complexity and fit (with discussion). Journal of Royal Statistical Society: Series B Statistical Methodology 64, 583639.CrossRefGoogle Scholar
Srirattana, K, McCosker, K, Schatz, T and John, JCSt. 2017. Cattle phenotypes can disguise their maternal ancestry. BMC Genetics 18, 59.CrossRefGoogle ScholarPubMed
Tsai, T, Rajasekar, S and John, JCSt. 2016. The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus). BMC Genetics 17, 67.CrossRefGoogle Scholar
Wilham, RL 1972. The role of maternal effects in animal breeding: III Biometrical aspects of maternal effects in animals. Journal of Animal Science 35, 12881293.CrossRefGoogle Scholar
Wolf, JB and Wade, MJ 2009. What are maternal effects (and what they are not)? Philosophical Transactions of the Royal Society B 364, 11071115.CrossRefGoogle ScholarPubMed
Supplementary material: File

Noguera et al. supplementary material

Tables S1-S4

Download Noguera et al. supplementary material(File)
File 21.6 KB