Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-16T20:06:34.429Z Has data issue: false hasContentIssue false

Extensions of the causal framework to Mendelian randomisation and gene–environment interaction

Published online by Cambridge University Press:  11 September 2023

Claire M. A. Haworth
Affiliation:
School of Psychological Science, University of Bristol, Bristol, UK claire.haworth@bristol.ac.uk https://www.bristol.ac.uk/people/person/Claire-Haworth-04ed5882-f1f6-4fb5-8960-5581b0cc8bc4/ robyn.wootton@bristol.ac.uk
Robyn E. Wootton
Affiliation:
School of Psychological Science, University of Bristol, Bristol, UK claire.haworth@bristol.ac.uk https://www.bristol.ac.uk/people/person/Claire-Haworth-04ed5882-f1f6-4fb5-8960-5581b0cc8bc4/ robyn.wootton@bristol.ac.uk Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway https://app.cristin.no/persons/show.jsf?id=1265206

Abstract

In our commentary we ask whether we should ultimately endeavour to find the deep causes of behaviours? Then we discuss two extensions of the proposed framework: (1) Mendelian randomisation and (2) hypothesis-free gene–environment interaction (leveraging heterogeneity in genetic associations). These complementary methods help move us towards second-generation causal knowledge, ultimately understanding mechanistic pathways and identifying more effective intervention targets.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, J. M., Wang, R. A., Davis, O. S. P., Collard, P., & Haworth, C. M. A. (2021). Positive wellbeing and resilience following adolescent victimisation: An exploration into protective factors across development. JCPP Advances, 1(2), e12024. https://doi.org/10.1002/jcv2.12024CrossRefGoogle ScholarPubMed
Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23(R1), R89R98.CrossRefGoogle ScholarPubMed
Lawlor, D. A., Tilling, K., & Davey Smith, G. (2016). Triangulation in aetiological epidemiology. International Journal of Epidemiology, 45(6), 18661886.Google ScholarPubMed
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62(5), 473481.CrossRefGoogle ScholarPubMed
Rees, J. M. B., Foley, C. N., & Burgess, S. (2020). Factorial Mendelian randomization: Using genetic variants to assess interactions. International Journal of Epidemiology, 49(4), 11471158. https://doi.org/10.1093/ije/dyz161CrossRefGoogle ScholarPubMed
Rioux, J. D., Xavier, R. J., Taylor, K. D., Silverberg, M. S., Goyette, P., Huett, A., … Brant, S. R. (2007). Genome-wide association study identifies five novel susceptibility loci for Crohn's disease and implicates a role for autophagy in disease pathogenesis. Nature Genetics, 39(5), 596604. doi: 10.1038/ng2032CrossRefGoogle Scholar
Sanderson, E., Davey Smith, G., Windmeijer, F., & Bowden, J. (2019). An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. International Journal of Epidemiology, 48(3), 713727.CrossRefGoogle ScholarPubMed
Watson, H. J., Yilmaz, Z., Thornton, L. M., Hübel, C., Coleman, J. R., Gaspar, H. A., … Mattheisen, M. (2019). Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 51(8), 12071214.CrossRefGoogle ScholarPubMed