Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-11T01:49:52.391Z Has data issue: false hasContentIssue false

The interaction of central and peripheral processing in L2 handwritten production: Evidence from cross-linguistic variations

Published online by Cambridge University Press:  07 March 2024

Yang Fu
Affiliation:
School of International Studies, Zhejiang University, Hangzhou, China School of Foreign Languages, Hangzhou City University, Hangzhou, China Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, Tenerife, Spain
Carlos J. Álvarez
Affiliation:
Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, Tenerife, Spain
Beatriz Bermúdez-Margaretto
Affiliation:
Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain Instituto de Integración en la Comunidad - INICO, Universidad de Salamanca, Salamanca, Spain;
Olivia Afonso
Affiliation:
Centre for Psychological Research, Oxford Brookes University, Oxford, UK
Huili Wang*
Affiliation:
School of Foreign Languages, Hangzhou City University, Hangzhou, China
Alberto Domínguez
Affiliation:
Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, Tenerife, Spain
*
Author for correspondence: Huili Wang; Email: wanghl@hzcu.edu.cn

Abstract

The current study explores the interplay between central and peripheral processes in second language (L2) handwriting among bilinguals with diverse orthographic backgrounds. Our investigation delves into the cross-linguistic transfer effect in Spanish–English and Chinese–English bilinguals, emphasizing lexical frequency and phoneme-grapheme (P-O) consistency in spelling-to-dictation and immediate copying tasks. Results reveal that the interaction between central and peripheral processes in L2 handwritten production is shaped by the bilinguals' native language (L1) orthographic characteristics. Spanish–English bilinguals exhibited sensitivity to P-O consistency and the spread of this effect from central to peripheral processes throughout both tasks. Conversely, Chinese–English bilinguals showed heightened sensitivity to lexical frequency during orthographic planning and motor execution, particularly in the immediate copying task. In a broader context, these findings suggest that the parallel and cascading coordination of the L2 writing system is modulated by cross-linguistic variations. The implications of our findings hold relevance for handwriting production and bilingualism research.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has earned badges for transparent research practices: Open Data and Open Materials. For details see the Data Availability Statement.

References

Afonso, O., & Álvarez, C. J. (2019). Constituent frequency effects in the written production of spanish compound words. Memory & Cognition, 47, 12841296.Google Scholar
Afonso, O., Álvarez, C. J., & Kandel, S. (2015a). Effects of grapheme-to-phoneme probability on writing durations. Memory & Cognition, 43(4), 579592.CrossRefGoogle ScholarPubMed
Afonso, O., Suárez-Coalla, P., & Cuetos, F. (2015b). Spelling impairments in spanish dyslexic adults. Frontiers in Psychology, 6, 466.Google Scholar
Afonso, O., Suárez-Coalla, P., González-Martín, N., & Cuetos, F. (2018). The impact of word frequency on peripheral processes during handwriting: A matter of age. Quarterly Journal of Experimental Psychology, 71(3), 695703.Google Scholar
Afonso, O., Suárez-Coalla, P., & Cuetos, F. (2020). Writing impairments in spanish children with developmental dyslexia. Journal of Learning Disabilities, 53, 109119.CrossRefGoogle ScholarPubMed
Akamatsu, N. (1999). The effects of first language orthographic features on word recognition processing in english as a second language. Reading and Writing, 11(4), 381403.Google Scholar
Akamatsu, N. (2002). A similarity in word-recognition procedures among second language readers with different first language backgrounds. Applied Psycholinguistics, 23(1), 117133.CrossRefGoogle Scholar
Alvarez, C. J., Cottrell, D., & Afonso, O. (2009). Writing dictated words and picture names: Syllabic boundaries affect execution in spanish. Applied Psycholinguistics, 30(2), 205223.CrossRefGoogle Scholar
Alves, R., Branco, M., Castro, S. L., & Olive, T. (2012). Effects of handwriting skill, output modes, and gender on fourth graders’ pauses, language bursts, fluency, and quality. Past, Present, and Future Contributions of Cognitive Writing Research to Cognitive Psychology.Google Scholar
Baayen, R. H., & Milin, P. (2010). Analyzing reaction times. International Journal of Psychological Research, 3(2), 1228.Google Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of memory and language, 59(4), 390412.Google Scholar
Basso, A., Taborelli, A., & Vignolo, L. (1978). Dissociated disorders of speaking and writing in aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 41(6), 556563.Google Scholar
Baxter, D. M., & Warrington, E. K. (1986). Ideational agraphia: A single case study. Journal of Neurology, Neurosurgery & Psychiatry, 49(4), 369374.Google Scholar
Ben-Yehudah, G., Hirshorn, E. A., Simcox, T., Perfetti, C. A., & Fiez, J. A. (2019). Chinese-english bilinguals transfer L1 lexical reading procedures and holistic orthographic coding to L2 english. Journal of Neurolinguistics, 50, 136148.CrossRefGoogle Scholar
Bonin, P., Peereman, R., & Fayol, M. (2001). Do phonological codes constrain the selection of orthographic codes in written picture naming? Journal of Memory and Language, 45(4), 688720.CrossRefGoogle Scholar
Bonin, P., Roux, S., Barry, C., & Canell, L. (2012). Evidence for a limited-cascading account of written word naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(6), 1741.Google Scholar
Bonin, P., Méot, A., Lagarrigue, A., & Roux, S. (2015). Written object naming, spelling to dictation, and immediate copying: Different tasks, different pathways? Quarterly Journal of Experimental Psychology, 68(7), 12681294.Google Scholar
Bosse, M.-L., Valdois, S., & Tainturier, M.-J. (2003). Analogy without priming in early spelling development. Reading and Writing, 16(7), 693716.Google Scholar
Brunswick, N., McCrory, E., Price, C., Frith, C., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: A search for wernicke's wortschatz? Brain, 122(10), 19011917.Google Scholar
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 128.Google Scholar
Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. The R Journal, 10(1), 395411.Google Scholar
Chee, Q. W., Chow, K. J., Yap, M. J., & Goh, W. D. (2020). Consistency norms for 37,677 english words. Behavior Research Methods, 52, 25352555.CrossRefGoogle Scholar
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. New York: Academic Press.Google Scholar
Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D. (1977). Access to the internal lexicon. In Attention and performance VI (pp. 535555). Routledge.Google Scholar
Costa, A., Miozzo, M., & Caramazza, A. (1999). Lexical selection in bilinguals: Do words in the bilingual's two lexicons compete for selection? Journal of Memory and Language, 41(3), 365397.Google Scholar
Damian, M. F. (2003). Articulatory duration in single-word speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 416.Google Scholar
Damian, M. F., & Stadthagen-Gonzalez, H. (2009). Advance planning of form properties in the written production of single and multiple words. Language and Cognitive Processes, 24(4), 555579.Google Scholar
Delattre, M., Bonin, P., & Barry, C. (2006). Written spelling to dictation: Sound-to-spelling regularity affects both writing latencies and durations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(6), 1330.Google ScholarPubMed
de León Rodríguez, D., Buetler, K. A., Eggenberger, N., Laganaro, M., Nyffeler, T., Annoni, J. M., & Müri, R. M. (2016). The impact of language opacity and proficiency on reading strategies in bilinguals: An eye movement study. Frontiers in psychology, 7, 649.Google Scholar
Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93(3), 283.Google Scholar
Dijkstra, T., & Van Heuven, W. J. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175197.Google Scholar
Dijkstra, T., Heuven, W. J. B. V., & Grainger, J. (1998). Simulating cross-language competition with the bilingual interactive activation model. Psychologica Belgica, 38, 177196.Google Scholar
Ellis, A. W. (1979). Cd slips of the pen. Visible Language, 13(3), 265282.Google Scholar
Fernando, C. V. (2000). Psicología de la escritura, diagnóstico y tratamiento de los trastornos de escritura. CISS praxis educación. Monografías Escuela Española.Google Scholar
Folk, J. R., Rapp, B., & Goldrick, M. (2002). The interaction of lexical and sublexical information in spelling: What's the point? Cognitive Neuropsychology, 19(7), 653671.Google Scholar
Frost, R., Katz, L., & Bentin, S. (1987). Strategies for visual word recognition and orthographical depth: A multilingual comparison. Journal of Experimental Psychology: Human Perception and Performance, 13(1), 104.Google ScholarPubMed
Gelman, A., Simpson, D., & Betancourt, M. (2017). The prior can often only be understood in the context of the likelihood. Entropy, 19(10), 113.CrossRefGoogle Scholar
Geschwind, N. (1974). Problems in the anatomical understanding of the aphasias. In Selected papers on language and the brain (pp. 431451). Springer.Google Scholar
Guinet, E., & Kandel, S. (2010). Ductus: A software package for the study of handwriting production. Behavior Research Methods, 42(1), 326332.CrossRefGoogle Scholar
Hamada, M., & Koda, K. (2008). Influence of first language orthographic experience on second language decoding and word learning. Language Learning, 58(1), 131.Google Scholar
Hamada, M., & Koda, K. (2010). The role of phonological decoding in second language word-meaning inference. Applied Linguistics, 31(4), 513531.Google Scholar
Hamada, M., & Koda, K. (2011). Similarity and difference in learning L2 word-form. System, 39(4), 500509.Google Scholar
Houghton, G., & Zorzi, M. (2003). Normal and impaired spelling in a connectionist dual-route architecture. Cognitive Neuropsychology, 20(2), 115162.CrossRefGoogle Scholar
Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5(1), 67104.Google Scholar
Jared, D. (1997). Spelling–sound consistency affects the naming of high-frequency words. Journal of Memory and Language, 36(4), 505529.Google Scholar
Jared, D., McRae, K., & Seidenberg, M. S. (1990). The basis of consistency effects in word naming. Journal of Memory and Language, 29(6), 687715.Google Scholar
Kandel, S., & Perret, C. (2015). How does the interaction between spelling and motor processes build up during writing acquisition? Cognition, 136, 325336.Google Scholar
Kandel, S., & Spinelli, E. (2010). Processing complex graphemes in handwriting production. Memory & Cognition, 38, 762770.Google Scholar
Kandel, S., & Valdois, S. (2006). French and spanish-speaking children use different visual and motor units during spelling acquisition. Language and Cognitive Processes, 21(5), 531561.Google Scholar
Kandel, S., Peereman, R., Grosjacques, G., & Fayol, M. (2011). For a psycholinguistic model of handwriting production: Testing the syllable-bigram controversy. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1310.Google Scholar
Kandel, S., Peereman, R., & Ghimenton, A. (2013). Further evidence for the interaction of central and peripheral processes: The impact of double letters in writing english words. Frontiers in Psychology, 4, 729.CrossRefGoogle ScholarPubMed
Kandel, S., Peereman, R., Ghimenton, A., & Perret, C. (2019). Letter coding affects movement production in word writing: An english–italian cross-linguistic study. Reading and Writing, 32(1), 95114.Google Scholar
Keuleers, E. (2013). Vwr: Useful functions for visual word recognition research. https://CRAN.R-project.org/package=vwrGoogle Scholar
Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The british lexicon project: Lexical decision data for 28,730 monosyllabic and disyllabic english words. Behavior Research Methods, 44, 287304.Google Scholar
Koda, K. (2007). Reading and language learning: Crosslinguistic constraints on second language reading development. Language Learning.Google Scholar
Koda, K. (2008). Impacts of prior literacy experience on second language learning to read. In Learning to read across languages (pp. 80108). Routledge.Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connections between bilingual memory representations. Journal of Memory and Language, 33(2), 149174.Google Scholar
Kroll, J. F., & Tokowicz, N. (2005). Models of bilingual representation and processing: Looking back and to the future. Oxford University Press.Google Scholar
Kroll, J. F., Van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The revised hierarchical model: A critical review and assessment. Bilingualism: Language and Cognition, 13(3), 373381.Google Scholar
Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270280.CrossRefGoogle Scholar
Lacruz, I., & Folk, J. R. (2004). Feedforward and feedback consistency effects for high-and low-frequency words in lexical decision and naming. The Quarterly Journal of Experimental Psychology Section A, 57(7), 12611284.Google Scholar
Lallier, M., & Carreiras, M. (2018). Cross-linguistic transfer in bilinguals reading in two alphabetic orthographies: The grain size accommodation hypothesis. Psychonomic bulletin & review, 25, 386-401.Google Scholar
Lambert, E., Alamargot, D., Larocque, D., & Caporossi, G. (2011). Dynamics of the spelling process during a copy task: Effects of regularity and frequency. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 65(3), 141.Google Scholar
Lau, D. K. Y. (2019). Grain size units of chinese handwriting: Development and disorder. Clinical Linguistics and Phonetics, 33, 869884.Google Scholar
Lau, D. K. Y. (2021). The dual-route account of writing-to-dictation in chinese: A short report. Language and Speech, 64(4), 790803.Google Scholar
Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of english. Behavior Research Methods, 44, 325343.CrossRefGoogle ScholarPubMed
Li, P., Zhang, F., Yu, A., & Zhao, X. (2020). Language History Questionnaire (LHQ3): An enhanced tool for assessing multilingual experience. Bilingualism: Language and Cognition, 23(5), 938-944.Google Scholar
Lorenz, A., Zwitserlood, P., Bürki, A., Regel, S., Ouyang, G., & Rahman, R. A. (2021). Morphological facilitation and semantic interference in compound production: An ERP study. Cognition, 209, 104518.Google Scholar
Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample size planning for statistical power and accuracy in parameter estimation. Annual Review of Psychologyl, 59, 537563.Google Scholar
McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86(4), 287.Google Scholar
Meyer, A. S., Roelofs, A., & Levelt, W. J. (2003). Word length effects in object naming: The role of a response criterion. Journal of Memory and Language, 48(1), 131147.Google Scholar
Miceli, G., & Miceli, G. (1997). Semantic errors as neuropsychological evidence for the independence and the interaction of orthographic and phonological word forms. Language and Cognitive Processes, 12(5-6), 733764.Google Scholar
Mokhtari, K., & Reichard, C. A. (2002). Assessing students’ metacognitive awareness of reading strategies. Journal of Educational Psychology, 94(2), 249.Google Scholar
Olive, T. (2014). Toward a parallel and cascading model of the writing system: A review of research on writing processes coordination. Journal of Writing Research, 6(2), 173194.Google Scholar
Olive, T., & Kellogg, R. T. (2002). Concurrent activation of high-and low-level production processes in written composition. Memory & Cognition, 30(4), 594600.Google Scholar
Oppenheim, G. M. (2018). The paca that roared: Immediate cumulative semanticinterference among newly acquired words. Cognition, 177, 2129.Google Scholar
Perry, C., & Ziegler, J. C. (2002). Cross-language computational investigation of the length effect in reading aloud. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 990.Google Scholar
Planton, S., Jucla, M., Roux, F.-E., & Démonet, J.-F. (2013). The “handwriting brain”: A meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex, 49(10), 27722787.Google Scholar
Purcell, J. J., Turkeltaub, P. E., Eden, G. F., & Rapp, B. (2011). Examining the central and peripheral processes of written word production through meta-analysis. Frontiers in Psychology, 2, 239.CrossRefGoogle ScholarPubMed
Qu, Q., Damian, M. F., Zhang, Q., & Zhu, X. (2011). Phonology contributes to writing: Evidence from written word production in a nonalphabetic script. Psychological Science, 22(9), 11071112.Google Scholar
Rabe, M. M., Vasishth, S., Hohenstein, S., Kliegl, R., & Schad, D. J. (2020). Hypr: An r package for hypothesis-driven contrast coding. Journal of Open Source Software, 5(48), 2134.Google Scholar
Rapp, B., Benzing, L., & Caramazza, A. (1997). The autonomy of lexical orthography. Cognitive Neuropsychology, 14(1), 71104.Google Scholar
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/Google Scholar
Roux, S., & Bonin, P. (2012). Cascaded processing in written naming: Evidence from the picture–picture interference paradigm. Language and Cognitive Processes, 27(5), 734769.Google Scholar
Roux, S., McKeeff, T. J., Grosjacques, G., Afonso, O., & Kandel, S. (2013). The interaction between central and peripheral processes in handwriting production. Cognition, 127(2), 235241.Google Scholar
Rumelhart, D. E., & Norman, D. A. (1982). Simulating a skilled typist: A study of skilled cognitive-motor performance. Cognitive Science, 6(1), 136.Google Scholar
Seidenberg, M. S. (1985). The time course of phonological code activation in two writing systems. Cognition, 19(1), 130.Google Scholar
Share, D. L. (2008). On the Anglocentricities of current reading research and practice: The perils of overreliance on an “outlier” orthography. Psychological Bulletin, 134(4), 584615. https://doi.org/10.1037/0033-2909.134.4.584Google Scholar
Stan Development Team. (2018). Stan modeling language users guide and reference manual (Version 2.18.0) [Computer software]. Stan Development Team. http://mc-stan.orgGoogle Scholar
Steacy, L. M., Compton, D. L., Petscher, Y., Elliott, J. D., Smith, K., Rueckl, J. G., Sawi, O., Frost, S. J., & Pugh, K. R. (2019). Development and prediction of context-dependent vowel pronunciation in elementary readers. Scientific Studies of Reading, 23(1), 4963.CrossRefGoogle ScholarPubMed
Suárez-Coalla, P., González-Martín, N., & Cuetos, F. (2018). Word writing in spanish-speaking children: Central and peripheral processes. Acta Psychologica, 191, 201209.Google Scholar
Suárez-Coalla, P., Villanueva, N., González-Pumariega, S., & González-Nosti, M. (2016). Spelling difficulties in spanish-speaking children with dyslexia/dificultades de escritura en niños españoles con dislexia. Infancia y Aprendizaje, 39(2), 275311.Google Scholar
Suárez-Coalla, P., Afonso, O., Martínez-García, C., & Cuetos, F. (2020). Dynamics of sentence handwriting in dyslexia: The impact of frequency and consistency. Frontiers in Psychology, 11, 319.Google Scholar
Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using Multivariate Statistics, Vol. 6. Boston, MA: pearson, pp. 497516.Google Scholar
Tainturier, M.-J., & Rapp, B. (2001). The spelling process. The Handbook of Cognitive Neuropsychology: What Deficits Reveal about the Human Mind, 263289.Google Scholar
Tainturier, M.-J., Bosse, M.-L., Roberts, D. J., Valdois, S., & Rapp, B. (2013). Lexical neighborhood effects in pseudoword spelling. Frontiers in Psychology, 4, 862.Google Scholar
Treiman, R. (2018). Statistical learning and spelling. Language, Speech, and Hearing Services in Schools, 49(3S), 644652.Google Scholar
Van Galen, G. P. (1991). Handwriting: Issues for a psychomotor theory. Human Movement Science, 10(2-3), 165191.Google Scholar
Van Heuven, W. J., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and improved word frequency database for british english. Quarterly Journal of Experimental Psychology, 67(6), 11761190.Google Scholar
Wagner, R. K., Torgesen, J. K., Rashotte, C. A., & Pearson, N. A. (1999). Comprehensive test of phonological processing: CTOPP. Pro-ed Austin, TX.Google Scholar
Wang, M., & Koda, K. (2005). Commonalities and differences in word identification skills among learners of english as a second language. Language Learning, 55(1), 7198.Google Scholar
Wang, M., Koda, K., & Perfetti, C. A. (2003). Alphabetic and nonalphabetic L1 effects in english word identification: A comparison of korean and chinese english L2 learners. Cognition, 87(2), 129149.Google Scholar
Wang, R., Huang, S., Zhou, Y., & Cai, Z. G. (2020). Chinese character handwriting: A large-scale behavioral study and a database. Behavior Research Methods, 52(1), 8296.Google Scholar
Weingarten, R. (2005). Subsyllabic units in written word production. Written Language & Literacy, 8(1), 4361.Google Scholar
Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond coltheart's n: A new measure of orthographic similarity. Psychonomic Bulletin & Review, 15(5), 971979.Google Scholar
Zhang, Q., & Feng, C. (2017). The interaction between central and peripheral processing in chinese handwritten production: Evidence from the effect of lexicality and radical complexity. Frontiers in Psychology, 8, 334.Google Scholar
Zhang, Q., & Wang, C. (2015). Phonology is not accessed earlier than orthography in chinese written production: Evidence for the orthography autonomy hypothesis. Frontiers in Psychology, 6, 448.Google Scholar
Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131(1), 3.Google Scholar
Ziegler, J. C., Perry, C., Jacobs, A. M., & Braun, M. (2001). Identical words are read differently in different languages. Psychological Science, 12(5), 379384.Google Scholar
Supplementary material: File

Fu et al. supplementary material 1

Fu et al. supplementary material
Download Fu et al. supplementary material 1(File)
File 291.7 KB
Supplementary material: File

Fu et al. supplementary material 2

Fu et al. supplementary material
Download Fu et al. supplementary material 2(File)
File 826.6 KB