Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T02:37:23.078Z Has data issue: false hasContentIssue false

Evaluating the impact of different control states in current psychiatric research design

Published online by Cambridge University Press:  26 June 2023

Harry Williams*
Affiliation:
Foundation trainee within Buckinghamshire Health NHS Trust, currently based at Stoke Mandeville Hospital, Aylesbury, UK. He has an interest in experimental medicine and research methodology.
*
Correspondence Dr Harry Williams. Email: harry.williams11@nhs.net

Summary

A ‘control’ provides a point of clinical comparison for a new intervention, allowing researchers and clinicians to draw more confident conclusions about the effectiveness or potential harm of a given, often novel, therapy. Although this aspect of a trial's design provides the basis from which interventional impact is measured, it is often less closely examined. This commentary appraises a Cochrane Review that compares various controls in common use in modern psychiatric research and aims to characterise their effects on the outcomes of that research.

Type
Round the corner
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Commentary on… Control interventions in randomised trials among people with mental health disorders (Cochrane Corner). See this issue.

References

Atkins, D, Best, D, Briss, PA, et al. (2004) Grading quality of evidence and strength of recommendations. BMJ, 328: 1490.Google ScholarPubMed
Bellg, A, Borrelli, B, Resnick, B, et al. (2004) Enhancing treatment fidelity in health behavior change studies: best practices and recommendations from the NIH Behavior Change Consortium. Health Psychology, 23: 443–51.CrossRefGoogle ScholarPubMed
Bothwell, LE, Podolsky, SH (2016) The emergence of the randomized, controlled trial. New England Journal of Medicine, 375: 501–4.CrossRefGoogle ScholarPubMed
Brinkhaus, B, Witt, CM, Jena, S, et al. (2006) Acupuncture in patients with chronic low back pain: a randomized controlled trial. Archives of Internal Medicine, 166: 450–7.Google ScholarPubMed
Faltinsen, E, Todorovac, A, Staxen Bruun, L, et al. (2022) Control interventions in randomised trials among people with mental health disorders. Cochrane Database of Systematic Reviews, 4: MR000050 (https://doi.org/10.1002/14651858.MR000050.pub2).Google ScholarPubMed
Gold, SM, Enck, P, Hasselmann, H, et al. (2017) Control conditions for randomised trials of behavioural interventions in psychiatry: a decision framework. Lancet Psychiatry, 4: 725–32.CrossRefGoogle ScholarPubMed
Higgins, J, Thomas, J, Chandler, J, et al. (2019) Cochrane Handbook for Systematic Reviews of Interventions Version 6.0 (Updated July 2019). Cochrane. Available from www.training.cochrane.org/handbook.CrossRefGoogle Scholar
Howlin, P, Gordon, RK, Pasco, G, et al. (2007) The effectiveness of picture exchange communication system (PECS) training for teachers of children with autism: a pragmatic, group randomised controlled trial. Journal of Child Psychology and Psychiatry, 48: 473–81.CrossRefGoogle ScholarPubMed
Hróbjartsson, A, Gøtzsche, P (2010) Placebo interventions for all clinical conditions. Cochrane Database of Systematic Reviews, 1: CD003974.Google Scholar
Linde, K, Streng, A, Jürgens, S, et al. (2005) Acupuncture for patients with migraine: a randomized controlled trial. JAMA, 293: 2118–25.10.1001/jama.293.17.2118CrossRefGoogle ScholarPubMed
Melchart, D, Streng, A, Hoppe, A, et al. (2005) Acupuncture in patients with tension-type headache: randomised controlled trial. BMJ, 331: 376–82.CrossRefGoogle ScholarPubMed
Mohr, DC, Spring, B, Freedland, KE, et al. (2009) The selection and design of control conditions for randomized controlled trials of psychological interventions. Psychotherapy and Psychosomatics, 78: 275–84.CrossRefGoogle ScholarPubMed
Mohr, DC, Ho, J, Hart, TL, et al. (2014) Control condition design and implementation features in controlled trials: a meta-analysis of trials evaluating psychotherapy for depression. Translational Behavioral Medicine, 4: 407–23.CrossRefGoogle ScholarPubMed
Patterson, B, Boyle, MH, Kivlenieks, M, et al. (2016) The use of waitlists as control conditions in anxiety disorders research. Journal of Psychiatric Research, 83: 112–20.10.1016/j.jpsychires.2016.08.015CrossRefGoogle ScholarPubMed
Scharf, HP, Mansmann, U, Streitberger, K, et al. (2006) Acupuncture and knee osteoarthritis: a three-armed randomized trial. Annals of Internal Medicine, 145: 1220.CrossRefGoogle ScholarPubMed
Schulz, K, Chalmers, I, Hayes, RJ, et al. (1995) Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA, 273: 408–12.CrossRefGoogle ScholarPubMed
Sibbald, B, Roland, M (1998) Understanding controlled trials: why are randomised controlled trials important? BMJ, 316: 201.Google Scholar
Witt, C, Brinkhaus, B, Jena, S, et al. (2005) Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet, 366: 136–43.CrossRefGoogle ScholarPubMed
Submit a response

eLetters

No eLetters have been published for this article.