Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T16:46:05.629Z Has data issue: false hasContentIssue false

Association between dietary antioxidants intake and the risk of type 2 diabetes mellitus in a prospective cohort study: Tehran Lipid and Glucose Study

Published online by Cambridge University Press:  20 December 2023

Melika Golmohamadi
Affiliation:
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
Somayeh Hosseinpour-Niazi
Affiliation:
Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Parto Hadaegh
Affiliation:
Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
Parvin Mirmiran*
Affiliation:
Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Fereidoun Azizi
Affiliation:
Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Farzad Hadaegh*
Affiliation:
Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
*
*Corresponding authors: Farzad Hadaegh, emails fzhadaegh@endocrine.ac.ir; farzadhadaegh@gmail.com and Parvin Mirmiran, email mirmiran@endocrine.ac.ir
*Corresponding authors: Farzad Hadaegh, emails fzhadaegh@endocrine.ac.ir; farzadhadaegh@gmail.com and Parvin Mirmiran, email mirmiran@endocrine.ac.ir

Abstract

The present prospective cohort study aimed to determine whether dietary antioxidants were associated with incident type 2 diabetes mellitus (T2DM). Another objective was to find out whether such associations could be modified by the BMI status. A total of 2188 Tehranian adults aged 21–84 years, free of T2DM with the validated FFQ, was entered in the study. Multivariable Cox proportional hazards models adjusting for confounders were used to assess the association between dietary antioxidants and incident T2DM in total population, as well as in subjects with various BMI statuses. During 8·9 (8·1–9·6) years of follow-up, dietary vitamin E significantly decreased the incident T2DM, after adjustment for confounders. However, other dietary antioxidants were not shown to be significantly associated with incident T2DM. The interaction between dietary vitamin E, Mg and BMI status was found to influence the risk of T2DM (Pfor interaction < 0·05). After stratification of subjects based on BMI status, it was found that vitamin E and Mg decreased the risk of T2DM only among normal-weight individual. Also, an inverse association was found among dietary vitamin C, dietary Zn and the risk of T2DM in individuals with normal weight but not in overweight and obese individuals; however, the interaction test tended to be significant for these dietary variables. Dietary antioxidants including vitamin E, vitamin C, Zn and Mg when accompanied by healthy weight, may bring benefits to the prevention of T2DM.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors have contributed equally to this work

References

Khan, MAB, Hashim, MJ, King, JK, et al. (2020) Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health 10, 107111.CrossRefGoogle ScholarPubMed
Safiri, S, Karamzad, N, Kaufman, JS, et al. (2022) Prevalence, deaths and Disability-Adjusted-Life-Years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990–2019: results from the global burden of disease study 2019. Front Endocrinol 13, 838027.CrossRefGoogle ScholarPubMed
Luc, K, Schramm-Luc, A, Guzik, TJ, et al. (2019) Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol 70, 809824.Google ScholarPubMed
Harding, AH, Wareham, NJ, Bingham, SA, et al. (2008) Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: the European prospective investigation of cancer--Norfolk prospective study. Arch Intern Med 168, 14931499.CrossRefGoogle ScholarPubMed
Das, UN (2019) Vitamin C for type 2 diabetes mellitus and hypertension. Arch Med Res 50, 1114.CrossRefGoogle ScholarPubMed
Mason, SA, Parker, L, van der Pligt, P, et al. (2023) Vitamin C supplementation for diabetes management: a comprehensive narrative review. Free Radic Biol Med 194, 255283.CrossRefGoogle ScholarPubMed
Sacco, M, Pellegrini, F, Roncaglioni, MC, et al. (2003) Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care 26, 32643272.CrossRefGoogle ScholarPubMed
Montonen, J, Knekt, P, Järvinen, R, et al. (2004) Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27, 362366.CrossRefGoogle ScholarPubMed
Canoy, D, Wareham, N, Welch, A, et al. (2005) Plasma ascorbic acid concentrations and fat distribution in 19 068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am J Clinl Nutr 82, 12031209.CrossRefGoogle ScholarPubMed
Ashor, AW, Werner, AD, Lara, J, et al. (2017) Effects of vitamin C supplementation on glycaemic control: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr 71, 13711380.CrossRefGoogle ScholarPubMed
Beletate, V, El Dib, RP & Atallah, AN (2007) Zinc supplementation for the prevention of type 2 diabetes mellitus. The Cochrane Database of Systematic Review, issue 1, CD005525.CrossRefGoogle Scholar
Costarelli, L, Muti, E, Malavolta, M, et al. (2010) Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Bioch 21, 432437.CrossRefGoogle ScholarPubMed
He, P, Li, H, Liu, M, et al. (2022) U-shaped association between dietary zinc intake and new-onset diabetes: a nationwide cohort study in China. J Clin Endocrinol Metab 107, e815e824.CrossRefGoogle ScholarPubMed
Zhao, B, Deng, H, Li, B, et al. (2020) Association of magnesium consumption with type 2 diabetes and glucose metabolism: a systematic review and pooled study with trial sequential analysis. Diabetes Metab Res Rev 36, e3243.CrossRefGoogle ScholarPubMed
Schulze, MB, Schulz, M, Heidemann, C, et al. (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167, 956965.CrossRefGoogle ScholarPubMed
Bjelakovic, G, Nikolova, D, Gluud, LL, et al. (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842857.CrossRefGoogle ScholarPubMed
Gunasekara, P, Hettiarachchi, M, Liyanage, C, et al. (2011) Blood sugar lowering effect of zinc and multi vitamin/ mineral supplementation is dependent on initial fasting blood glucose. J Diabetol 2, 310.Google Scholar
Neeland, IJ, Poirier, P & Després, JP (2018) Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation 137, 13911406.CrossRefGoogle ScholarPubMed
Zhou, C, Na, L, Shan, R, et al. (2016) Dietary vitamin C intake reduces the risk of type 2 diabetes in Chinese adults: HOMA-IR and T-AOC as potential mediators. PloS One 11, e0163571.CrossRefGoogle ScholarPubMed
Sacks, FM, Bray, GA, Carey, VJ, et al. (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. New Engl J Med 360, 859873.CrossRefGoogle ScholarPubMed
Dong, JY, Xun, P, He, K, et al. (2011) Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care 34, 21162122.CrossRefGoogle ScholarPubMed
Song, Y, Manson, JE, Buring, JE, et al. (2004) Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 27, 5965.CrossRefGoogle ScholarPubMed
Drake, I, Hindy, G, Ericson, U, et al. (2017) A prospective study of dietary and supplemental zinc intake and risk of type 2 diabetes depending on genetic variation in SLC30A8. Genes Nutr 12, 30.CrossRefGoogle ScholarPubMed
Joo, YS, Kim, HW, Lee, S, et al. (2021) Dietary zinc intake and incident chronic kidney disease. Clin Nutr 40, 10391045.CrossRefGoogle ScholarPubMed
Zhao, B, Zeng, L, Zhao, J, et al. (2020) Association of magnesium intake with type 2 diabetes and total stroke: an updated systematic review and meta-analysis. BMJ Open 10, e032240.CrossRefGoogle ScholarPubMed
Azizi, F, Zadeh-Vakili, A & Takyar, M (2018) Review of rationale, design, and initial findings: Tehran lipid and glucose study. Int J Endocrinol Metab 16, e84777.Google ScholarPubMed
Bozorgmanesh, M, Hadaegh, F, Ghaffari, S, et al. (2011) A simple risk score effectively predicted type 2 diabetes in Iranian adult population: population-based cohort study. Eur J Public Health 21, 554559.CrossRefGoogle ScholarPubMed
Hosseinpour-Niazi, S, Aghayan, M, Mirmiran, P, et al. (2021) Does weight change modify the association between the consumption of sugar-sweetened beverages and 100 % fruit juice and the risk of metabolic syndrome? Clinn Nutr 40, 52615268.CrossRefGoogle Scholar
Smaeili, M & Hushiarrad, A (2018) Iranian Food Composition Table. Tehran: Shadid Beheshti University of Medical Sciences Press.Google Scholar
Hu, FB, Stampfer, MJ, Rimm, E, et al. (1999) Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. Am J Epidemiol 149, 531540.CrossRefGoogle ScholarPubMed
Mirmiran, P, Esfahani, FH, Mehrabi, Y, et al. (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr 13, 654662.CrossRefGoogle ScholarPubMed
Esfahani, FH, Asghari, G, Mirmiran, P, et al. (2010) Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol 20, 150158.CrossRefGoogle Scholar
Asghari, G, Rezazadeh, A, Hosseini-Esfahani, F, et al. (2012) Reliability, comparative validity and stability of dietary patterns derived from an FFQ in the Tehran Lipid and Glucose Study. Br J Nutr 108, 11091117.CrossRefGoogle ScholarPubMed
Kriska, AM, Knowler, WC, LaPorte, RE, et al. (1990) Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 13, 401411.CrossRefGoogle ScholarPubMed
Ainsworth, BE, Haskell, WL, Whitt, MC, et al. (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32, S498S504.CrossRefGoogle ScholarPubMed
Momenan, AA, Delshad, M, Sarbazi, N, et al. (2012) Reliability and validity of the Modifiable Activity Questionnaire (MAQ) in an Iranian urban adult population. Arch Iran Med 15, 279282.Google Scholar
American Diabetes Association Professional Practice Committee (2022) 2. Classification and Diagnosis of Diabetes: standards of Medical Care in Diabetes-2022. Diabetes Care 45, S17S38.CrossRefGoogle Scholar
Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S; discussion 1229S–1231S.CrossRefGoogle ScholarPubMed
Liu, S, Lee, IM, Song, Y, et al. (2006) Vitamin E and risk of type 2 diabetes in the women’s health study randomized controlled trial. Diabetes 55, 28562862.CrossRefGoogle ScholarPubMed
Ward, NC, Wu, JH, Clarke, MW, et al. (2007) The effect of vitamin E on blood pressure in individuals with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. J Hypertens 25, 227234.CrossRefGoogle ScholarPubMed
Miller, ER, Pastor-Barriuso, R, Dalal, D, et al. (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142, 3746.CrossRefGoogle ScholarPubMed
Yin, T, Zhu, X, Xu, D, et al. (2021) The association between dietary antioxidant micronutrients and cardiovascular disease in adults in the United States: a cross-sectional study. Front Nutr 8, 799095.CrossRefGoogle ScholarPubMed
Harvard T.H. Chan (2022) The Nutrition Source https://www.hsph.harvard.edu/nutritionsource/vitamin-e/ (accessed December 2022).Google Scholar
Sarsangi, P, Salehi-Abargouei, A, Ebrahimpour-Koujan, S, et al. (2022) Association between adherence to the Mediterranean diet and risk of type 2 diabetes: an updated systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr 13, 17871798.CrossRefGoogle Scholar
Said, E, Mousa, S, Fawzi, M, et al. (2021) Combined effect of high-dose vitamin A, vitamin E supplementation, and zinc on adult patients with diabetes: a randomized trial. J Adv Res 28, 2733.CrossRefGoogle ScholarPubMed
Imanparast, F, Javaheri, J, Kamankesh, F, et al. (2020) The effects of chromium and vitamin D(3) co-supplementation on insulin resistance and tumor necrosis factor-α in type 2 diabetes: a randomized placebo-controlled trial. Appl Physiol Nutr Metab 45, 471477.CrossRefGoogle ScholarPubMed
Afzali, H, Jafari Kashi, AH, Momen-Heravi, M, et al. (2019) The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen 27, 277284.CrossRefGoogle ScholarPubMed
Zheng, JS, Luan, J, Sofianopoulou, E, et al. (2021) Plasma vitamin C and type 2 diabetes: genome-wide association study and Mendelian randomization analysis in European populations. Diabetes Care 44, 98106.CrossRefGoogle ScholarPubMed
Kaidar-Person, O, Person, B, Szomstein, S, et al. (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part B: minerals. Obes Surg 18, 10281034.CrossRefGoogle ScholarPubMed
Esposito, K, Pontillo, A, Di Palo, C, et al. (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289, 17991804.CrossRefGoogle ScholarPubMed
Khorsandi, H, Nikpayam, O, Yousefi, R, et al. (2019) Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: a randomized, placebo-controlled, double-blind trial. Diabetol Metab Syndr 11, 101.CrossRefGoogle ScholarPubMed
Marreiro, DN, Geloneze, B, Tambascia, MA, et al. (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112, 109118.CrossRefGoogle ScholarPubMed
Xu, T, Chen, GC, Zhai, L, et al. (2015) Nonlinear reduction in risk for type 2 diabetes by magnesium intake: an updated meta-analysis of prospective cohort studies. Biomed Environmen Sci 28, 527534.Google ScholarPubMed
Ma, B, Lawson, AB, Liese, AD, et al. (2006) Dairy, magnesium, and calcium intake in relation to insulin sensitivity: approaches to modeling a dose-dependent association. Am J Epidemiol 164, 449458.CrossRefGoogle ScholarPubMed
Gröber, U, Schmidt, J & Kisters, K (2015) Magnesium in prevention and therapy. Nutrients 7, 81998226.CrossRefGoogle ScholarPubMed
van Dam, RM, Hu, FB, Rosenberg, L, et al. (2006) Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care 29, 22382243.CrossRefGoogle ScholarPubMed
Harati, H, Hadaegh, F, Saadat, N, et al. (2009) Population-based incidence of Type 2 diabetes and its associated risk factors: results from a six-year cohort study in Iran. BMC Public Health 9, 186.CrossRefGoogle ScholarPubMed
Willett, WC & Leibel, RL (2002) Dietary fat is not a major determinant of body fat. Am J Med 113, 47S59S.CrossRefGoogle ScholarPubMed
Zhang, W, Iso, H, Ohira, T, et al. (2012) Associations of dietary iron intake with mortality from cardiovascular disease: the JACC study. J Epidemiol 22, 484493.CrossRefGoogle ScholarPubMed
Bingham, SA, Luben, R, Welch, A, et al. (2003) Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 362, 212214.CrossRefGoogle ScholarPubMed
Mayer-Davis, EJ, Costacou, T, King, I, et al. (2002) Plasma and dietary vitamin E in relation to incidence of type 2 diabetes: the Insulin Resistance and Atherosclerosis Study (IRAS). Diabetes Care 25, 21722177.CrossRefGoogle ScholarPubMed
Supplementary material: File

Golmohamadi et al. supplementary material 1

Golmohamadi et al. supplementary material
Download Golmohamadi et al. supplementary material 1(File)
File 24.6 KB
Supplementary material: File

Golmohamadi et al. supplementary material 2

Golmohamadi et al. supplementary material
Download Golmohamadi et al. supplementary material 2(File)
File 430.1 KB
Supplementary material: File

Golmohamadi et al. supplementary material 3

Golmohamadi et al. supplementary material
Download Golmohamadi et al. supplementary material 3(File)
File 25.9 KB