Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-30T11:43:33.631Z Has data issue: false hasContentIssue false

Estimation of the availability of iron in the school meals of Municipal Centers for Early Childhood Education of a capital city in northeastern Brazil

Published online by Cambridge University Press:  20 March 2023

Amanda de Araújo Lima
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Laudilse de Morais Souza
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Gabriel Soares Bádue*
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Alcides da Silva Diniz
Affiliation:
Federal University of Pernambuco, Health Sciences Center, Department of Nutrition, Recife, Brazil
Luiz Gonzaga Ribeiro Silva-Neto
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Nassib Bezerra Bueno
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
João Araújo Barros-Neto
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Daniel da Silva Vasconcelos
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Nathálya da Silva Severino
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Vanessa Amorim Peixoto
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Karla Emanuelle Pereira de Vasconcelos
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
Terezinha da Rocha Ataíde
Affiliation:
Universidade Federal de Alagoas, Faculdade de Nutrição, Maceio, Brazil
*
*Corresponding author: Gabriel Soares Bádue, email gabriel.badue@fanut.ufal.br

Abstract

The final stage of Fe deficiency is Fe deficiency anaemia, with repercussions for human health, especially in children under 5 years of age. Studies conducted in Brazilian public daycare centres show high prevalence of anaemia. The present study aims to evaluate the availability of Fe in the meals of the Municipal Centers of Early Childhood Education in Maceió. The experimental design comprises selection of algorithms, menu evaluation, calculation of the estimates, comparison between the estimates obtained and the recommendations, and analysis of correlation between meal constituents, and of the concordance between the absorbable Fe estimates. Four algorithms were selected and a monthly menu consisting of 22 d. The correlation analysis showed a moderate positive correlation to animal tissue (AT) v. non-heme iron (r = 0·42; P = 0·04), and negative to AT v. Ca (r = −0·54; P = 0·09) and Ca v. phytates (r = −0·46, P = 0·03). Estimates of absorbable Fe ranged from 0·23 to 0·44 mg/d. The amount of Fe available, unlike the total amount of Fe offered, does not meet the nutritional recommendations on most school days. The Bland–Altman analysis indicated that the Monsen and Balinfty and Rickard et al. showed greater agreement. The results confirm the need to adopt strategies to increase the availability of Fe in school meals.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brazilian Society of Pediatrics (2018) Consensus on iron deficiency anemia: more than a disease, a medical emergency. Guidelines: Departments of nutrology and hematology-hemotherapy. BSP. pp. 7 [cited 2023 Feb]. Available from: https://edisciplinas.usp.br/pluginfile.php/4339952/mod_resource/content/2/Diretrizes_Consenso_sobre_anemia_ferropriva_artigo_sbp_junho_2018.pdf. Google Scholar
World Health Organization (2001) Iron Deficiency Anaemia. Assessment, Prevention, and Control. A Guide for Programme Managers. Geneva: WHO. pp. 114.Google Scholar
World Health Organization (2017) Nutritional Anaemias: Tools for Effective Prevention and Control. Geneva: WHO. pp. 96.Google Scholar
Federal University of Rio de Janeiro (2021) Biomarkers of micronutrient status: prevalence of deficiencies and micronutrient distribution curves in Brazilian children under 5 years old 3: ENANI 2019 [Internet]. Rio de Janeiro: UFRJ. [cited 2023 Feb]. Available from: https://enani.nutricao.ufrj.br/index.php/relatorios/ Google Scholar
Atlas of Human Development in Brazil (2022). [cited 2023 Jan]. Available from: http://www.atlasbrasil.org.br/ranking Google Scholar
da Silva Vieira, RCS, do Livramento, AR, Calheiros, MS, et al. (2017) Prevalence and temporal trend (2005–2015) of anaemia among children in Northeast Brazil. Public Health Nutr 21, 868876.10.1017/S1368980017003238CrossRefGoogle Scholar
BRAZIL. Ministry of Education.(2009) Resolution no. 38, of July 16, 2009. Provides for providing school meals to basic education students in the National School Meals Program. Official Diary of the Union. 2009 Jul 16.[cited 2023 Feb]. Available from: https://www.legisweb.com.br/legislacao/?id=111747 Google Scholar
BRAZIL. Ministry of Education (2020) National Education Development Fund. Deliberative Council. Resolution no. 06, of May 8, 2020. Provides for providing school meals to basic education students within the scope of the National School Meals Program – PNAE. Official Diary of the Union. 2020 May 08. [cited 2023 Feb]. Available from: https://www.gov.br/fnde/pt-br/acesso-a-informacao/legislacao/resolucoes/2020/resolucao-no-6-de-08-de-maio-de-2020/view Google Scholar
Fairweather-Tait, S & Hurrell, R (1996) Bioavailability of minerals and trace elements. Nutr Res Rev 9, 295324.10.1079/NRR19960016CrossRefGoogle ScholarPubMed
BRAZIL. Ministry of Health (2013) Secretary of Health Care. Department of Primary Care. National Iron Supplementation Program: general conduct manual. Brasilia: MS; 2013. 24 p. [cited 2023 Feb] Available from: https://bvsms.saude.gov.br/bvs/publicacoes/manual_suplementacao_ferro_condutas_gerais.pdf Google Scholar
Fuzi, SFA, Koller, D, Bruggraber, S, et al. (2017) A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope. Am J Clin Nutr 106, 14131421.10.3945/ajcn.117.161364CrossRefGoogle Scholar
Gibson, RS, Raboy, V & King, JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76, 793804.10.1093/nutrit/nuy028CrossRefGoogle ScholarPubMed
Monica, A, Lautaro, B, Fernando, P, et al. (2018) Calcium and zinc decrease intracellular iron by decreasing transport during iron repletion in an in vitro model. Eur J Nutr 57, 26932700.10.1007/s00394-017-1535-7CrossRefGoogle ScholarPubMed
Gibson, RS (2007) The role of diet and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull 28, 77100.10.1177/15648265070281S108CrossRefGoogle ScholarPubMed
Hurrell, R & Egli, I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91, 14611467.10.3945/ajcn.2010.28674FCrossRefGoogle ScholarPubMed
Saito, H (2014) Metabolism of iron stores. Nagoya J Med Sci 76, 235254.Google ScholarPubMed
Perignon, M, Barre, T, Gazan, R, et al. (2018) The bioavailability of iron, zinc, protein and vitamin A is highly variable in French individual diets: impact on nutrient inadequacy assessment and relation with the animal-to-plant ratio of diets. Food Chem 238, 7381.10.1016/j.foodchem.2016.12.070CrossRefGoogle ScholarPubMed
Reddy, MJ (2005) Algorithms to assess non-heme iron bioavailability. Int J Vitamin Nutr Res 75, 405412.10.1024/0300-9831.75.6.405CrossRefGoogle ScholarPubMed
Collings, R, Harvey, LJ, Hooper, L, et al. (2013) The absorption of iron from whole diets: a systematic review. Am J Clin Nutr 98, 6581.10.3945/ajcn.112.050609CrossRefGoogle ScholarPubMed
De Carli, E, Dias, GC, Morimoto, JM, et al. (2018) Dietary iron bioavailability: agreement between estimation methods and association with serum ferritin concentrations in women of childbearing age. Nutrients 10, 650666.10.3390/nu10050650CrossRefGoogle ScholarPubMed
Food Studies and Research Nucleus (NEPA)/State University of Campinas (UNICAMP) (2011) Brazilian food composition table – BFCT. Campinas: NEPA-UNICAMP. pp. 161.Google Scholar
Franco, G (2001) Food chemical composition table. Rio de Janeiro: Atheneu. 324 p.Google Scholar
Philippi, ST (2002) Food Composition Table: Support for nutritional decision, 1st ed. São Paulo: Coronário. pp. 135.Google Scholar
Food and Agriculture Organization of the United Nations Nutrition and Food Systems Division. (2018) FAO/INFOODS/IZiNCG Global Food Composition Database for Phytate Version 1.0 – PhyFoodComp 1.0. Rome: FAO/IZINCG. pp. 22.Google Scholar
Monsen, ER & Balintfy, JL (1982) Calculating dietary iron bioavailability: refinement and computerization. J Am Dietetic Assoc 80, 307311.10.1016/S0002-8223(21)08469-8CrossRefGoogle ScholarPubMed
Singer, JD, Granahan, R, Goodrich, NN, et al. (1982) Diet and iron status, a study of relationship: united States, 1971–1974. Vital Health Stat 11, 133.Google Scholar
Du, S, Zhai, F, Wang, Y, et al. (2000) Current methods for estimating dietary iron bioavailability do not work in China. J Nutr 130, 193198.10.1093/jn/130.2.193CrossRefGoogle Scholar
Rickard, AP, Chatfield, MD, Conway, RE, et al. (2009) An algorithm to assess intestinal iron availability for use in dietary surveys. Br J Nutr 102, 16781685.10.1017/S0007114509990894CrossRefGoogle ScholarPubMed
Institute of Medicine (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington: National Academy Press. pp. 773.Google Scholar
Altman, DG & Bland, JM (1983) Measurement in medicine: the analysis of method comparison studies. J Royal Stat Society Ser D (The Statistician) 32, 307317.Google Scholar
Hirakata, VN & Camey, SA (2009) Agreement Analysis between Bland-Altman methods. Rev HCPA 29, 261268.Google Scholar
Pureza, IR, Macena, ML, Silva Junior, AE, et al. (2020) Agreement between equations-estimated resting metabolic rate and indirect calorimetry-estimated resting metabolic rate in low-income obese women. Arch Endocrinol Metab 54, 402411.Google Scholar
Stralen, KJ, Jager, KJ, Zoccali, C, et al. (2008) Agreement between methods. Kidney Int 74, 11161120.10.1038/ki.2008.306CrossRefGoogle ScholarPubMed
Beard, JL, Murray-Kolb, LE, Haas, JD, et al. (2007) Iron absorption prediction equations lack agreement and underestimate iron absorption. J Nutr 137, 17411746.10.1093/jn/137.7.1741CrossRefGoogle ScholarPubMed
Oliveira, WL, Oliveira, FC & Amancio, OM (2008) Nutritional status and hematological and serum iron levels in preschool children from municipalities with different child development indices. Rev Paulista Pediatria 26, 225230.10.1590/S0103-05822008000300005CrossRefGoogle Scholar
Reddy, MB, Hurrell, RF & Cook, JD (2006) Meat consumption in a varied diet marginally influences nonheme iron absorption in normal individuals. J Nutr 136, 576581.10.1093/jn/136.3.576CrossRefGoogle Scholar
Reddy, MB, Hurrell, RF & Cook, JD (2000) Estimation of nonheme-iron bioavailability from meal composition. Am J Clin Nutr 71, 937943.10.1093/ajcn/71.4.937CrossRefGoogle ScholarPubMed
Lynch, SR (2000) The effect of calcium on iron absorption. Nutr Res Rev 13, 141158.10.1079/095442200108729043CrossRefGoogle ScholarPubMed
Zamzam, KFR, Zito, CA & Hunt, JR (2005) Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. Am J Clin Nutr 82, 589597.Google Scholar
Candia, V, Ríos-Castillo, I, Carrera-Gil, F, et al. (2018) Effect of various calcium salts on non-heme iron bioavailability in fasted women of childbearing age. J Trace Elem Med Biol 49, 812.10.1016/j.jtemb.2018.04.029CrossRefGoogle ScholarPubMed
Aranha, FQ, Barros, ZF, Moura, LS, et al. (2000) The role of vitamin C on organic changes in the elderly. Rev Nutrição 13, 8997.10.1590/S1415-52732000000200003CrossRefGoogle Scholar
Zuffo, CRK, Osório, MM, Taconeli, CA, et al. (2016) Prevalence and risk factors of anemia in children. J Pediatr 92, 353360.10.1016/j.jped.2015.09.007CrossRefGoogle ScholarPubMed
Hallberg, L & Hulthen, L (2000) Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr 71, 11471160.10.1093/ajcn/71.5.1147CrossRefGoogle ScholarPubMed
Bhargava, A, Bouis, HE & Scrimshaw, NS (2001) Dietary intakes and socioeconomic factors are associated with the hemoglobin concentration of Bangladesh women. J Nutr 131, 758764.10.1093/jn/131.3.758CrossRefGoogle Scholar
Conway, RE, Powell, JJ & Geissler, CA (2007) A food-group based algorithm to predict non-heme iron absorption. Int J Food Sci Nutr 58, 2941.10.1080/09637480601121250CrossRefGoogle ScholarPubMed
Armah, SM, Carriquiry, A, Sullivan, D, et al. (2013) A complete diet-based algorithm for predicting nonheme iron absorption in adults. J Nutr 143, 11361140.10.3945/jn.112.169904CrossRefGoogle ScholarPubMed
Dainty, JR, Berry, R, Lynch, SR, et al. (2014) Estimation of dietary iron bioavailability from food iron intake and iron status. PLoS One 9, 19.10.1371/journal.pone.0111824CrossRefGoogle ScholarPubMed
Anand, AN & Seshadri, S (1995) A quantitative model for prediction of iron bioavailability from Indian meals: an experimental study. Int J Food Sci Nutr 46, 335342.10.3109/09637489509012565CrossRefGoogle ScholarPubMed
Chiplonkar, SA & Agte, VV (2003) Statistical model for predicting nonheme bioavailability from vegetarian meals. Int J Food Sci Nutr 57, 434450.10.1080/09637480600836833CrossRefGoogle Scholar
Murphy, SP, Beaton, GH & Calloway, DH (1992) Estimation mineral intakes of toddlers: predicted prevalence of inadequacy in village populations in Egypt, Kenya, and Mexico. Am J Clin Nutr 56, 565572.10.1093/ajcn/56.3.565CrossRefGoogle ScholarPubMed
Monsen, ER, Hallberg, L, Layrisse, M, et al. (1978) Estimation of available dietary iron. Am J Clin Nutr 31, 134141.10.1093/ajcn/31.1.134CrossRefGoogle ScholarPubMed