Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-13T18:10:24.208Z Has data issue: false hasContentIssue false

Food consumption and nutrient intake of Finnish preschool children according to parental educational level

Published online by Cambridge University Press:  10 July 2023

Essi Skaffari*
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
Henna Vepsäläinen
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
Kaija Nissinen
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland School of Food and Agriculture, Seinäjoki University of Applied Sciences, Seinäjoki, Finland
Elviira Lehto
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland Department of Sociology, University of Helsinki, Helsinki, Finland Folkhälsan Research Center, Helsinki, Finland
Reetta Lehto
Affiliation:
Folkhälsan Research Center, Helsinki, Finland
Eva Roos
Affiliation:
Folkhälsan Research Center, Helsinki, Finland Department of Food Studies, Nutrition and Dietetics, Uppsala Universitet, Uppsala, Sweden Department of Public Health, University of Helsinki, Helsinki, Finland
Maijaliisa Erkkola
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
Liisa Korkalo
Affiliation:
Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
*
*Corresponding author: Essi Skaffari, email essi.skaffari@helsinki.fi

Abstract

We examined the association between parental educational level (PEL) and children’s food consumption and nutrient intake in a sample of Finnish 3- to 6-year-old preschoolers (n 811). The data were obtained from the cross-sectional DAGIS project, conducted in eight municipalities in Finland during 2015–2016. The food consumption and nutrient intake were assessed using food records. The highest educational level of the family was used as the indicator of socio-economic status. Differences in diet by PEL were analysed using a hierarchical linear model adjusted for energy intake. Compared with high PEL, low PEL was associated with a child’s lower consumption of fresh vegetables and salads, vegetarian dishes, berries, white bread, blended spread, skimmed milk and ice cream but higher consumption of milk with 1–1·5 % fat content, dairy-based desserts and sugar-sweetened soft drinks. Food consumption was also examined after disaggregating dishes into their ingredients. Low PEL was associated with lower consumption of vegetables, nuts and seeds, berries and fish but higher consumption of red meat. Children in the low PEL, compared with the high PEL group, had a lower intake of protein, fibre, EPA, DHA, vitamin D, riboflavin, vitamin B6, folate, vitamin B12, vitamin C, potassium, phosphorous, Ca, Mg, Zn and iodine but a higher intake of fat and saturated, trans and MUFA. The observed diet-related disparities highlight the need for policy actions and interventions supporting healthy eating patterns such as high consumption of vegetables, nuts and berries in childhood, paying special attention to those with low PEL.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaikkonen, R, Mäki, P, Hakulinen-Viitanen, T, et al. (editors) (2012) Differences in Health and Well-Being among Children and Families. Helsinki: Finnish Institute for Health and Welfare. https://www.julkari.fi/handle/10024/80049 Google Scholar
Mattila, M (editor) (2020) Inequality in Finland 2020 [Internet]. https://sorsafoundation.fi/wp-content/uploads/Eriarvoisuus2020_web2.pdf (accessed November 2021).Google Scholar
Zarnowiecki, DM, Dollman, J & Parletta, N (2014) Associations between predictors of children’s dietary intake and socioeconomic position: a systematic review of the literature. Obes Rev J Int Assoc Study Obes 15, 375391.10.1111/obr.12139CrossRefGoogle ScholarPubMed
Mikkilä, V, Räsänen, L, Raitakari, OT, et al. (2004) Longitudinal changes in diet from childhood into adulthood with respect to risk of cardiovascular diseases: the Cardiovascular Risk in Young Finns Study. Eur J Clin Nutr 58, 10381045.Google Scholar
Puolakka, E, Pahkala, K, Laitinen, TT, et al. (2018) Childhood socioeconomic status and lifetime health behaviors: the Young Finns Study. Int J Cardiol 258, 289294.Google Scholar
Cohen, S, Janicki-Deverts, D, Chen, E, et al. (2010) Childhood socioeconomic status and adult health. Ann N Y Acad Sci 1186, 3755.Google Scholar
Bammann, K, Gwozdz, W, Lanfer, A, et al. (2013) Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes 8, 112.Google Scholar
Vazquez, CE & Cubbin, C (2020) Socioeconomic status and childhood obesity: a review of literature from the past decade to inform intervention research. Curr Obes Rep 9, 562570.Google Scholar
Puolakka, E, Pahkala, K, Laitinen, TT, et al. (2016) Childhood socioeconomic status in predicting metabolic syndrome and glucose abnormalities in adulthood: the cardiovascular risk in young Finns study. Diabetes Care 39, 23112317.Google Scholar
Tamayo, T, Christian, H & Rathmann, W (2010) Impact of early psychosocial factors (childhood socioeconomic factors and adversities) on future risk of type 2 diabetes, metabolic disturbances and obesity: a systematic review. BMC Public Health 10, 525.Google Scholar
Fismen, AS, Buoncristiano, M, Williams, J, et al. (2021) Socioeconomic differences in food habits among 6- to 9-year-old children from 23 countries-WHO European Childhood Obesity Surveillance Initiative (COSI 2015/2017). Obes Rev J Int Assoc Study Obes 6, e13211.Google Scholar
Eloranta, AM, Lindi, V, Schwab, U, et al. (2011) Dietary factors and their associations with socioeconomic background in Finnish girls and boys 6–8 years of age: the PANIC Study. Eur J Clin Nutr 65, 12111218.Google Scholar
Koivuniemi, E, Gustafsson, J, Mäkelä, I, et al. (2022) Parental and child factors associated with 2- to 6-year-old children’s diet quality in Finland. J Acad Nutr Diet 122, 129138.Google Scholar
Kyttälä, P, Ovaskainen, M, Kronberg-Kippilä, C, et al. (2008) The diet of children under school age. https://www.julkari.fi/handle/10024/78163 (accessed May 2021).Google Scholar
Fernández-Alvira, JM, Mouratidou, T, Bammann, K, et al. (2013) Parental education and frequency of food consumption in European children: the IDEFICS study. Public Health Nutr 16, 487498.10.1017/S136898001200290XCrossRefGoogle ScholarPubMed
Pereira-da-Silva, L, Rêgo, C & Pietrobelli, A (2016) The diet of preschool children in the Mediterranean countries of the European union: a systematic review. Int J Environ Res Public Health 13, E572.Google Scholar
Pinket, AS, De Craemer, M, Huybrechts, I, et al. (2016) Diet quality in European pre-schoolers: evaluation based on diet quality indices and association with gender, socio-economic status and overweight, the ToyBox-study. Public Health Nutr 19, 24412450.10.1017/S1368980016000604CrossRefGoogle ScholarPubMed
Bjelland, M, Brantsæter, AL, Haugen, M, et al. (2013) Changes and tracking of fruit, vegetables and sugar-sweetened beverages intake from 18 months to 7 years in the Norwegian Mother and Child Cohort Study. BMC Public Health 13, 793.10.1186/1471-2458-13-793CrossRefGoogle ScholarPubMed
Papamichael, MM, Karatzi, K, Mavrogianni, C, et al. (2022) Socioeconomic vulnerabilities and food intake in European children: the Feel4Diabetes Study. Nutrition 103–104, 111744.Google Scholar
Novaković, R, Cavelaars, A, Geelen, A, et al. (2014) Review article socio-economic determinants of micronutrient intake and status in Europe: a systematic review. Public Health Nutr 17, 10311045.Google Scholar
Palosuo, H, Koskinen, S, Lahelma, E, et al. (2009) Health Inequalities in Finland. Trends in Socioeconomic Health Differences 1980–2005. Ministry of Social Affairs and Health. https://julkaisut.valtioneuvosto.fi/handle/10024/72254 (accessed September 2021).Google Scholar
Lehto, E, Ray, C, Vepsäläinen, H, et al. (2018) Increased Health and Wellbeing in Preschools (DAGIS) Study—Differences in Children’s Energy Balance-Related Behaviors (EBRBs) and in long-term stress by parental educational level. Int J Environ Res Public Health 15, 2313.Google Scholar
Ministry of Education and Culture, Finland (2022) Finnish Education System. https://okm.fi/en/education-system (accessed September 2021).Google Scholar
Statistics of Finland (2021) Income distribution statistics. http://www.stat.fi/til/tjt/kas_en.html (accessed May 2021).Google Scholar
Nissinen, K, Korkalo, L, Vepsäläinen, H, et al. (2018) Accuracy in the estimation of children’s food portion sizes against a food picture book by parents and early educators. J Nutr Sci 7, e35.10.1017/jns.2018.26CrossRefGoogle ScholarPubMed
Nissinen, K, Sillanpää, H, Korkalo, L, et al. (2016) The Children’s Food Picture Book. RTY. https://rty.fi/verkkokauppa/kirjat-ja-oppaat/annoskuvakirja/ (accessed May 2021).Google Scholar
National Institute for Health and Welfare (2017) Nutrition Unit. Fineli - Finnish National Food Composition Database Release 18. https://fineli.fi/fineli/en/index (accessed May 2021).Google Scholar
Lehto, R, Ray, C, Vepsäläinen, H, et al. (2019) Early educators’ practices and opinions in relation to pre-schoolers’ dietary intake at pre-school: case Finland. Public Health Nutr 22, 15671575.Google Scholar
Manios, Y, Kourlaba, G, Kondaki, K, et al. (2009) Diet quality of preschoolers in Greece based on the Healthy Eating Index: the GENESIS study. J Am Diet Assoc 109, 616623.Google Scholar
Drouillet-Pinard, P, Dubuisson, C, Bordes, I, et al. (2017) Socio-economic disparities in the diet of French children and adolescents: a multidimensional issue. Public Health Nutr 20, 870882.Google Scholar
Lehto, E, Ray, C, Te Velde, S, et al. (2015) Mediation of parental educational level on fruit and vegetable intake among schoolchildren in ten European countries. Public Health Nutr 18, 8999.Google Scholar
Forestell, CA (2017) Flavor perception and preference development in human infants. Ann Nutr Metab 70, 1725.10.1159/000478759CrossRefGoogle ScholarPubMed
Aune, D, Giovannucci, E, Boffetta, P, et al. (2017) Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 46, 10291056.Google Scholar
Clonan, A, Roberts, KE & Holdsworth, M (2016) Socioeconomic and demographic drivers of red and processed meat consumption: implications for health and environmental sustainability. Proc Nutr Soc 75, 367373.Google Scholar
Korkalo, L, Nissinen, K, Skaffari, E, et al. (2019) The contribution of preschool meals to the diet of Finnish preschoolers. Nutrients 11, 1531.Google Scholar
Kyttälä, P, Erkkola, M, Kronberg-Kippilä, C, et al. (2010) Food consumption and nutrient intake in Finnish 1–6-year-old children. Public Health Nutr 13, 947956.10.1017/S136898001000114XCrossRefGoogle ScholarPubMed
Te Morenga, L & Montez, JM (2017) Health effects of saturated and trans-fatty acid intake in children and adolescents: systematic review and meta-analysis. PloS One 12, e0186672.Google Scholar
Wu, JHY, Micha, R & Mozaffarian, D (2019) Dietary fats and cardiometabolic disease: mechanisms and effects on risk factors and outcomes. Nat Rev Cardiol 16, 581601.Google Scholar
Evans, CEL (2017) Sugars and health: a review of current evidence and future policy. Proc Nutr Soc 76, 400407.Google Scholar
Malik, VS, Pan, A, Willett, WC, et al. (2013) Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis. Am J Clin Nutr 98, 10841102.Google Scholar
Erkkola, M, Kronberg-Kippilä, C, Kyttälä, P, et al. (2008) Sucrose in the diet of 3-year-old Finnish children: sources, determinants and impact on food and nutrient intake. Br J Nutr 101, 12091217.10.1017/S0007114508057619CrossRefGoogle ScholarPubMed
Galobardes, B, Shaw, M, Lawlor, DA, et al. (2006) Indicators of socioeconomic position (part 1). J Epidemiol Community Health 60, 712.Google Scholar
O’Neill, J, Tabish, H, Welch, V, et al. (2014) Applying an equity lens to interventions: using PROGRESS ensures consideration of socially stratifying factors to illuminate inequities in health. J Clin Epidemiol 67, 5664.Google Scholar
Skaffari, E, Erkkola, M, Korkalo, L, et al. (2022) The associations between family income, perceived income and children’s diet. Sos Aikakauslehti 59, 121138. https://journal.fi/sla/article/view/113015 Google Scholar
Darmon, N & Drewnowski, A (2015) Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr Rev 73, 643660.Google Scholar
Slimani, N, Freisling, H, Illner, AK, et al. (2015) Methods to determine dietary intake. In Nutrition Research Methodologies, pp. 4870 [Lovegrove, JA, Hodson, L, Sharma, S, et al., editors]. Hoboken, NJ: Wiley. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119180425.ch4 Google Scholar
Statistics Finland (2022) Educational Structure of Population. https://stat.fi/en/statistics/vkour (accessed May 2023).Google Scholar
Sichert-Hellert, W & Kersting, M (2004) Vitamin and mineral supplements use in German children and adolescents between 1986 and 2003: results of the DONALD Study. Ann Nutr Metab 48, 414419.Google Scholar
Sicińska, E, Pietruszka, B, Januszko, O, et al. (2019) Different socio-demographic and lifestyle factors can determine the dietary supplement use in children and adolescents in central-eastern Poland. Nutrients 11:658.10.3390/nu11030658CrossRefGoogle ScholarPubMed
Kinnunen, S (2020) Dietary supplement use in 3-6 -year-old children. Master’s thesis, University of Helsinki. https://helda.helsinki.fi/handle/10138/322745 (accessed May 2023).Google Scholar
Lehtisalo, J, Erkkola, M, Tapanainen, H, et al. (2010) Food consumption and nutrient intake in day care and at home in 3-year-old Finnish children. Public Health Nutr 13, 957964.Google Scholar
Shim, JS, Oh, K & Kim, HC (2014) Dietary assessment methods in epidemiologic studies. Epidemiol Health 22, e2014009.Google Scholar
Macdiarmid, J & Blundell, J (1998) Assessing dietary intake: who, what and why of under-reporting. Nutr Res Rev 11, 231253.Google Scholar
Supplementary material: File

Skaffari et al. supplementary material

Tables S1-S4

Download Skaffari et al. supplementary material(File)
File 38.2 KB