Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-30T16:18:25.906Z Has data issue: false hasContentIssue false

THE WIGNER PROPERTY OF SMOOTH NORMED SPACES

Published online by Cambridge University Press:  09 May 2024

XUJIAN HUANG
Affiliation:
Institute of Operations Research and Systems Engineering, College of Science, Tianjin University of Technology, Tianjin 300384, PR China e-mail: huangxujian86@sina.com
JIABIN LIU
Affiliation:
College of Science, Tianjin University of Technology, Tianjin 300384, PR China e-mail: liujb98@163.com
SHUMING WANG*
Affiliation:
College of Science, Tianjin University of Technology, Tianjin 300384, PR China

Abstract

We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying

$$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \end{align*} $$

where $\mathbb {T}$ is the unit circle of the complex plane, there exists a function $\sigma : X\rightarrow \mathbb {T}$ such that $\sigma \cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first and second authors were supported by the Natural Science Foundation of Tianjin Municipal Science and Technology Commission (Grant No. 22JCYBJC00420) and the National Natural Science Foundation of China (Grant No. 12271402). The third author was supported by the National Natural Science Foundation of China (Grant Nos. 12201459 and 12071358).

References

Almeida, D. F. and Sharma, C. S., ‘The first mathematical proof of Wigner’s theorem’, J. Nat. Geom. 2 (1992), 113123.Google Scholar
Bargmann, V., ‘Note on Wigner’s theorem on symmetry operations’, J. Math. Phys. 5 (1964), 862868.CrossRefGoogle Scholar
Chevalier, G., ‘Wigner’s theorem and its generalizations’, in: Handbook of Quantum Logic and Quantum Structures (eds. K. Engesser, D. M. Gabbay and D. Lehmann) (Elsevier Science B.V., Amsterdam, 2007), 429475.CrossRefGoogle Scholar
Gehér, G. P., ‘An elementary proof for the non-bijective version of Wigner’s theorem’, Phys. Lett. A 378(30–31) (2014), 20542057.CrossRefGoogle Scholar
Gehér, G. P., ‘Wigner’s theorem on Grassmann spaces’, J. Funct. Anal. 273(9) (2017), 29943001.CrossRefGoogle Scholar
Győry, M., ‘A new proof of Wigner’s theorem’, Rep. Math. Phys. 54 (2004), 159167.CrossRefGoogle Scholar
Huang, X. and Tan, D., ‘Wigner’s theorem in atomic ${L}_p$ -spaces $\left(p>0\right)$ ’, Publ. Math. Debrecen 92(3–4) (2018), 411418.CrossRefGoogle Scholar
Huang, X. and Tan, D., ‘Min-phase-isometries and Wigner’s theorem on real normed spaces’, Results Math. 77(4) (2022), Article no. 152, 15 pages.CrossRefGoogle Scholar
Ilišević, D., Omladič, M. and Turnšek, A., ‘Phase-isometries between normed spaces’, Linear Algebra Appl. 612 (2021), 99111.CrossRefGoogle Scholar
Ilišević, D. and Turnšek, A., ‘On Wigner’s theorem in smooth normed spaces’, Aequationes Math. 94(6) (2020), 12571267.CrossRefGoogle Scholar
Ilišević, D. and Turnšek, A., ‘On Wigner’s theorem in strictly convex normed spaces’, Publ. Math. Debrecen 97(3–4) (2020), 393401.CrossRefGoogle Scholar
Li, Y. and Tan, D., ‘Wigner’s theorem on the Tsirelson space $T$ ’, Ann. Funct. Anal. 10(4) (2019), 515524.CrossRefGoogle Scholar
Maksa, G. and Páles, Z., ‘Wigner’s theorem revisited’, Publ. Math. Debrecen 81(1–2) (2012), 243249.CrossRefGoogle Scholar
Megginson, R. E., An Introduction to Banach Space Theory (Springer-Verlag, New York, 1998).CrossRefGoogle Scholar
Molnár, L., ‘Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s theorem’, J. Funct. Anal. 194(2) (2002), 248262.CrossRefGoogle Scholar
Phelps, R. R., Convex Functions, Monotone Operators and Differentiability, 2nd edn (Springer-Verlag, Berlin, 1993).Google Scholar
Qian, W., Wang, L., Wu, W. and Yuan, W., ‘Wigner-type theorem on transition probability preserving maps in semifinite factors’, J. Funct. Anal. 276(6) (2019), 17731787.CrossRefGoogle Scholar
Rätz, J., ‘On Wigner’s theorem: remarks, complements, comments, and corollaries’, Aequationes Math. 52(1–2) (1996), 19.CrossRefGoogle Scholar
Tan, D. and Huang, X., ‘Phase-isometries on real normed spaces’, J. Math. Anal. Appl. 488(1) (2020), Article no. 124058, 17 pages.CrossRefGoogle Scholar
Tan, D. and Huang, X., ‘The Wigner property for CL-spaces and finite-dimensional polyhedral Banach spaces’, Proc. Edinb. Math. Soc. (2) 64(2) (2021), 183199.CrossRefGoogle Scholar
Tan, D. and Zhang, F., ‘Min-phase-isometries in strictly convex normed spaces’, Bull. Aust. Math. Soc. 109(1) (2024), 152160.CrossRefGoogle Scholar
Turnšek, A., ‘A variant of Wigner’s functional equation’, Aequationes Math. 89(4) (2015), 949956.CrossRefGoogle Scholar
Wang, R. and Bugajewski, D., ‘On normed spaces with the Wigner Property’, Ann. Funct. Anal. 11(3) (2020), 523539.CrossRefGoogle Scholar