Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T19:27:11.142Z Has data issue: false hasContentIssue false

Projection of FMRFamide-like neuropeptide-producing neurosecretory cells from silkworm brain into ventral nerve cord and retrocerebral complex

Published online by Cambridge University Press:  01 May 2012

Bo Yong Kim
Affiliation:
School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
Hwa Young Song
Affiliation:
School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
Mi Young Kim
Affiliation:
School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
Pil Don Kang
Affiliation:
Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suweon 441-100, Korea
Min Ho Cha
Affiliation:
Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea
Hun Hee Park
Affiliation:
Department of Clinical Laboratory Sciences, Ansan University, Ansan 426-701, Korea
Seung Gwan Lee
Affiliation:
Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 136-701 Korea
Chang Kyou Lee
Affiliation:
Department of Clinical Laboratory Sciences, College of Health Science, Korea University, Seoul 136-701 Korea
Chai Hyeock Yu
Affiliation:
Department of Biological Sciences, Inha University, Incheon 402-751, Korea
Bong Hee Lee*
Affiliation:
School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
*
1Corresponding author (e-mail: bhlee@korea.ac.kr).

Abstract

Using immunostaining methodology, we traced the axonal projection of FMRFamide (Phe-Met-Arg-Phe-NH2)-like immunoreactive (LI) medial neurosecretory cells (MNCs) and lateral neurosecretory cells (LNCs) from the brain into the ventral nerve cord (VNC) and retrocerebral complex in Bombyx mori (L.) (Lepidoptera: Bombycidae). Of the seven pairs of FMRFamide-LI MNCs, one pair extended its axons from the brain pars intercerebralis into the VNC ipsilateral connective where they appeared to terminate. The axons of the remaining MNCs ran through decussation in the brain median region and contralateral nervi corporis cardiaci (NCC) I out of the brain, and eventually innervated the contralateral corpus cardiacum (CC). Axons from the single pair of FMRFamide-LI LNCs projected into the ipsilateral NCC II fused with NCC I without decussation in the brain, and finally terminated in the CC. These results suggest that transport of the FMRFamide-like neuropeptide from may be related to the modulation of functions such as gut contraction in MNCs terminating in the VNC, and regulation of production and/or secretion of specific hormones such as juvenile hormone in MNCs and LNCs terminating in the CC.

Résumé

Utilisant une méthodologie immunostaining, nous avons retracé la projection axonale des FMRFamide (Phe-Met-Arg-Phe-NH2)-like immunoréactive médial cellules neurosécrétrices (medical neurosecretory cells; MNCs) et de latérales cellules neurosécrétrices (Lateral neurosecretory cells; LNCs) à partir de le cerveau dans le corde nerveuse ventrale et retrocerebral complexes dans Bombyx mori (L.) (Lepidoptera: Bombycidae). les 7 paires de FMRFamide MNC, 1 paire axone du cerveau pars intercerebralis dans le VNC connectivites ipsilatérale où ils sont apparus á la fin. Les axones des MNC a couru dans la région du cerveau médian et controlatéral nervi corporis cardiaci (NCC), je hors du cerveau, et innervées du controlatéral corps cardiacum (CC). Les axones de la seule paire de FMRFamide LNC projetés dans le ipsilatérale NCC IIfusionné avec NCCI sans décussation dans le cerveau et se termine dans le CC. Ces résultats suggèrent que le transport des FMRFamide-comme le neuropeptide partir peut être liée à la modulation des fonctions telles que l'intestin contraction dans MNC de terminaison dans le VNC, et la régulation de la production et / ou la sécrétion de certaines hormones tels que juvenile hormone chez les MNC et les LNC se terminant par le CC.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cuthbert, B.A.Evans, P.D. 1989. A comparison of the effects of FMRFamide-like peptides on locust heart and skeletal muscle. The Journal of Experimental Biology, 144: 395415.Google Scholar
D'Aniello, B., Fiorentino, M., Pinelli, C., di Meglio, M., Vallarino, M., Rastogi, R.K. 1996. Distribution of FMRFamide-like immunoreactivity in the brain and pituitary of Rana esculenta during development. Developmental Brain Research, 95: 194204.CrossRefGoogle ScholarPubMed
Dockray, G.J., Reeve, J.R. Jr., Shively, J., Gayton, R.J., Barnard, C.S. 1983. A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature, 305: 328330.Google Scholar
Gäde, G.Goldsworthy, G.J. 2003. Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Management Science, 59: 10631075.Google Scholar
Greenberg, M.J.Price, D.A. 1992. Relationships among the FMRFamidelike peptides. Progress in Brain Research, 92: 2537.Google Scholar
Grimmelikhuijzen, C.J.Graff, D. 1985. Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates. Peptides, 3(6 Suppl.) 477483.CrossRefGoogle Scholar
Ichikawa, T. 1991. Architecture of cerebral neurosecretory cell systems in the silkworm Bombyx mori. The Journal of Experimental Biology, 161: 217237.Google Scholar
Kim, M.Y., Lee, B.H., Kwon, D., Kang, H., Nässel, D.R. 1998. Distribution of tachykinin-related neuropeptide in the developing central nervous system of the moth Spodoptera litura. Cell and Tissue Research, 294: 351365.CrossRefGoogle ScholarPubMed
Kim, M.Y., Song, H.Y., Kim, S.O., Kang, P.D., Kwon, O., Lee, B.H. 2006. Brain-derived neurotrophic factor-like neuropeptide is secreted as a neurohormone from specific brain neurons into the corpus allatum in the silkworm Bombyx mori. Entomological Research, 36: 1619.CrossRefGoogle Scholar
Krajniak, K.G.Greenberg, M.J. 1992. The localization of FMRFamide in the nervous and somatic tissues of Nereis virens and its effects upon the isolated esophagus. Comparative Biochemistry and Physiology – Part C, 101: 93100.Google Scholar
Lange, A.B.Cheung, I.L. 1999. The modulation of skeletal muscle contraction by FMRFamide-related peptides of the locust. Peptides, 20: 14111418.Google Scholar
Lange, A.B., Peeff, N.M., Orchard, I. 1994. Isolation, sequence, and bioactivity of FMRFamide-related peptides from the locust ventral nerve cord. Peptides, 15: 10891094.CrossRefGoogle ScholarPubMed
Lee, K.S., You, K.H., Choo, J.K., Han, Y.M., Yu, K. 2004. Drosophila short neuropeptide regulates food intake and body size. Journal of Biological Chemistry, 279: 5078150789.CrossRefGoogle ScholarPubMed
Li, C.Calabrese, R.L. 1987. FMRFamide-like substances in the leech. III. Biochemical characterization and physiological effects. The Journal of Neuroscience, 7: 595603.Google Scholar
Maule, A.G., Geary, T.G., Bowman, J.W., Shaw, C., Falton, D.W., Thompson, D.P. 1996. The pharmacology of nematode FMRFamide-related peptides. Parasitology Today, 12: 351357.Google Scholar
Mercier, A.J., Friedrich, R., Boldt, M. 2003. Physiological functions of FMRFamide-like peptides (FLPs) in crustaceans. Microscopy Research and Technique, 60: 313324.CrossRefGoogle ScholarPubMed
Merte, J.Nichols, R. 2002. Drosophila melanogaster FMRFamide-containing peptides: redundant or diverse functions. Peptides, 23: 209220.Google Scholar
Na, S.Y., Sung, D.K., Kim, K.K., Kim, K.M., Kim, J.H., Park, H.H., et al. 2004. FMRFamide-expressing efferent neurons in eighth abdominal ganglion innervate hindgut in the silkworm, Bombyx mori. Zoological Science, 21: 805811.CrossRefGoogle ScholarPubMed
Nässel, D.R. 1996. Advances in the immunocytochemical localization of neuroactive substances in the insect nervous system. Journal of Neuroscience Methods, 69: 323.CrossRefGoogle ScholarPubMed
O'Brien, M.A., Schneider, L.E., Taghert, P.H. 1991. In situ hybridization analysis of the FMRFamide neuropeptide gene in Drosophila. II. Constancy in the cellular pattern of expression during metamorphosis. The Journal of Comparative Neurology, 304: 623638.CrossRefGoogle ScholarPubMed
Painter, S.D.Greenberg, M.J. 1982. A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5-hydroxytryptamine. The Biological Bulletin, 162: 311332.CrossRefGoogle Scholar
Palmer, G.C., Tran, A., Duttlinger, A., Nichols, R. 2007. The drosulfakinin 0 (DSK 0) peptide encoded in the conserved Dsk gene affects adult Drosophila melanogaster crop contractions. Journal of Insect Physiology, 53: 11251133.Google Scholar
Park, C., Jeon, S.K., Kim, M.Y., Han, S.S., Yu, C.H., Lee, B.H. 2001. Postembryonic localization on allatotropin- and allatostatin-producing cells in central nervous system of the silk moth Bombyx mori. Zoological Science, 18: 367379.CrossRefGoogle Scholar
Park, C., Hwang, J.S., Kang, S.W., Lee, B.H. 2002. Molecular characterization of a cDNA from the silk moth Bombyx mori encoding Manduca sexta allatotropin peptide. Zoological Science, 19: 287292.Google Scholar
Park, C.W., Kim, J.H., Kim, K.M., Hwang, J.S., Kang, S.W., Kang, H.S., et al. 2004. Evidence for brain-derived neurotrophic factor-like neuropeptide in brain of the silk moth Bombyx mori during postembryonic periods. Peptides, 25: 18911897.CrossRefGoogle ScholarPubMed
Peeff, N.M., Orchard, I., Lange, A.B. 1993. The effects of FMRFamide-related peptides on an insect (Locusta migratoria) visceral muscle. Journal of Insect Physiology, 39: 207215.CrossRefGoogle Scholar
Perry, S.J., Yi-Kung Huang, E., Crink, D., Bagust, J., Sharma, R., Walker, R.J., et al. 1997. A human gene encoding morphine modulating peptides related to NPFF and FMRFamide. FEBS Letters, 409: 426430.CrossRefGoogle ScholarPubMed
Price, D.A.Greenberg, M.J. 1977. Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc. Preparative Biochemistry, 7: 261281.CrossRefGoogle ScholarPubMed
Price, D.A.Greennberg, M.J. 1989. The hunting of the FaRPs: the distribution of FMRFamide-related peptides. The Biological Bulletin, 177: 198205.Google Scholar
Price, D.A.Greenberg, M.J. 1994. Comparative aspects of FMRFamide gene organization in mollusks. Netherland Journal of Zoology, 44: 421431.CrossRefGoogle Scholar
Schneider, L.E.Taghert, P.H. 1990. Organization and expression of the Drosophila Phe-Met-Arg-Phe-NH2 neuropeptide gene. The Journal of Biological Chemistry, 265: 68906895.CrossRefGoogle ScholarPubMed
Schoofs, L., Holman, G.M., Paemen, L., Veelaert, D., Amelinckx, M., De Loof, A. 1993. Isolation, identification, and synthesis of PDVDHFLRFamide (SchistoFLRFamide) in Locusta migratoria and its association with the male accessory glands, the salivary glands, the heart, and the oviduct. Peptides, 14: 409421.Google Scholar
Schurmann, F.W.Erber, J. 1990. FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light and electron microscopical study. Neuroscience, 38: 797807.Google Scholar
Secher, T., Lenz, C., Cazzamali, G., Sørensen, G., Williamson, M., Hansen, G.N., et al. 2001. Molecular cloning of a functional allatostatin gut/brain receptor and an allatostatin preprohormone from the silkworm Bombyx mori. The Journal of Biological Chemistry, 276: 4705247060.CrossRefGoogle Scholar
Song, H.W., Choi, C.O., Kim, M.Y., Kim, B.Y., Yoon, T.J., Song, D.Y., et al. 2009. Characterization of neuronal apoptosis in the ventral ganglia of postembryonic silkworms Bombyx mori (Lepidoptera: Bombycidae). European Journal of Entomology, 106: 507518.Google Scholar
Taghert, P.H. 1999. FMRFamide neuropeptides and neuropeptide-associated enzymes in Drosophila. Microscopy Research and Technique, 45: 8095.Google Scholar
Veenstra, J.A.Schooneveld, H. 1984. Immunocytochemical localization of neurons in the nervous system of the Colorado potato beetle with antisera against FMRFamide and bovine pancreatic polypeptide. Cell and Tissue Research, 235: 303308.CrossRefGoogle ScholarPubMed
Yamanaka, N., Hua, Y.J., Mizoguchi, A., Watanabe, K., Niwa, R., Tanaka, Y., et al. 2005. Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori. The Journal of Biological Chemistry, 280: 1468414690.CrossRefGoogle ScholarPubMed
Yamanaka, N., Zitnan, D., Kim, Y.J., Adams, M.E., Hua, Y.J., Suzuki, Y., et al. 2006. Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. Proceeding of the National Academy of Sciences of the United State of America, 103: 86228627.CrossRefGoogle ScholarPubMed
Yamanaka, N., Sachie, Y., Zitňan, D., Ken, W., Tsuyoshi, K., Honoo, S., et al. 2008. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS ONE, 32: e3048.CrossRefGoogle Scholar
Yamanaka, N., Roller, L., Zitňan, D., Satake, H., Mizoguchi, A., Kataoka, H., et al. 2011. Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. The Journal of Comparative Neurology, 519: 238246.Google Scholar
Yasuda-Kamatani, Y.Yasuda, A. 2006. Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. The Journal of Comparative Neurology, 496: 135147.Google Scholar