Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-14T09:05:56.729Z Has data issue: false hasContentIssue false

Cognitive and Behavioral Disorders in Patients with Superior Parietal Lobule Infarcts

Published online by Cambridge University Press:  10 June 2022

Emre Kumral*
Affiliation:
Department of Neurology, Ege University, Faculty of Medicine, İzmir, Turkey
Fatma Ece Çetin
Affiliation:
Department of Neurology, Acibadem Hospital, Bursa, Turkey
Hüseyin Nezih Özdemir
Affiliation:
Department of Neurology, Ege University, Faculty of Medicine, İzmir, Turkey
*
Corresponding author: Emre Kumra, Stroke Unit, Department of Neurology, Ege University, Faculty of Medicine, Bornova, Izmir, 35100, Turkey. Email: emre.kumral@ege.edu.tr

Abstract:

Background/Objective:

The superior parietal lobule (SPL) plays a strategic role in somatosensory and visuomotor integration. This study aims to evaluate the clinical, neurocognitive, and behavioral characteristics of isolated SPL stroke.

Methods

We assessed neuropsychological and behavioral findings in 14 patients with isolated SPL stroke among 4200 patients with ischemic stroke. All patients underwent neuroimaging, clinical and neuropsychological assessment after stroke.

Results:

Of the 14 patients enrolled, the first complaints were tactile and visuospatial disorders at stroke onset. Except for 6 patients with only 1 cognitive impairment, the majority of patients (57%) experienced more than 1 cognitive impairment category. Functional hemispheric asymmetries have been found in different cognitive processes, such as between visuospatial and body image functions and language process. Among visuospatial abilities disorders, spatial disorientation, visuospatial neglect, and visual extinction were found in two-thirds (63%) of patients with right SPL lesion. Body schema and image disorders were observed in all patients with right-sided lesions, such as alien hand, autotopagnosia for body parts (36%), autotopagnosia for sensory sensations (36%), and fading limb (21%). Two-thirds (57%) of patients with left SPL had impairment in language abilities.

Conclusion

Our findings after stroke suggest that SPL plays a pivotal role in the regulation of visuospatial abilities, body schema and body image processing, and language skills through bilateral frontoparietal networks and interhemispheric parietal networks.

Résumé :

RÉSUMÉ :

Troubles cognitifs et comportementaux chez des patients atteints d’infarctus du lobule pariétal supérieur.

Contexte/objectif :

Le lobule pariétal supérieur (LPS) joue un rôle stratégique dans l’intégration somatosensorielle et visuomotrice. Cette étude vise à évaluer les caractéristiques cliniques, neurocognitives et comportementales de l’AVC isolé du LPS.

Méthodes :

Sur 4200 patients atteints d’un AVC ischémique, nous avons évalué les résultats neuropsychologiques et comportementaux de 14 patients atteints d’un AVC isolé du LPS. À noter que tous ces patients avaient subi une évaluation clinique, neuropsychologique et en neuro-imagerie après leur AVC.

Résultats :

Sur les 14 patients recrutés, leurs premières remarques ont porté sur des troubles tactiles et visuospatiaux au début de leur AVC. À l’exception de 6 patients ne présentant qu’un seul trouble cognitif, la majorité d’entre eux, soit 57 %, ont présenté plus d’une catégorie de troubles cognitifs. Des asymétries hémisphériques fonctionnelles ont par exemple été constatées dans le cadre de différents processus cognitifs, notamment entre les fonctions visuospatiales et d’image corporelle et le processus du langage. Parmi les troubles des capacités visuospatiales, la désorientation spatiale, la négligence visuospatiale, l’extinction visuelle ont été notées chez presque deux tiers (63 %) des patients présentant une lésion du LPS droit. Des troubles du schéma corporel et de l’image du corps ont été observés chez tous les patients présentant des lésions du côté droit, par exemple la main étrangère, l’autotopagnosie des parties du corps (36 %), l’autotopagnosie des sensations sensorielles (36 %) et l’évanouissement du membre (fading limb) (21 %). Enfin, environ deux tiers (57 %) des patients dont le LPS gauche était atteint ont présenté des troubles du langage.

Conclusion :

Ces résultats après un AVC suggèrent donc que le LPS, outre les compétences linguistiques, joue un rôle central dans la régulation des capacités visuospatiales, du schéma corporel et du traitement de l’image corporelle par l’entremise des réseaux fronto-pariétaux bilatéraux et des réseaux pariétaux inter-hémisphériques.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Culham, JC, Cavina-Pratesi, C, Singhal, A. The role of parietal cortex in visuomotor control: what have we learned from neuroimaging? Neuropsychologia. 2006;44:2668–84.CrossRefGoogle ScholarPubMed
Iacoboni, M. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI. Neuropsychologia. 2006;44:2691–9.CrossRefGoogle ScholarPubMed
Weiss, PH, Marshall, JC, Zilles, K, Fink, GR. Are action and perception in near and far space additive or interactive factors? NeuroImage. 2003;18:837–46.CrossRefGoogle ScholarPubMed
Wenderoth, N, Debaere, F, Sunaert, S, van Hecke, P, Swinnen, SP. Parieto-premotor areas mediate directional interference during bimanual movements. Cereb Cortex. 2004;14:1153–63.CrossRefGoogle ScholarPubMed
Vingerhoets, G, de Lange, FP, Vandemaele, P, Deblaere, K, Achten, E. Motor imagery in mental rotation: an fMRI study. NeuroImage. 2002;17:1623–33.CrossRefGoogle ScholarPubMed
Wolbers, T, Weiller, C, Buchel, C. Contralateral coding of imagined body parts in the superior parietal lobe. Cereb Cortex. 2003;13:392–9.CrossRefGoogle ScholarPubMed
Corbetta, M, Shulman, GL, Miezin, FM, Petersen, SE. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science. 1995;270:802805.CrossRefGoogle ScholarPubMed
Lacquaniti, F, Perani, D, Guigon, E, et al. Visuomotor transformations for reaching to memorized targets: a PET study. NeuroImage. 1997;5:129–46.CrossRefGoogle ScholarPubMed
Zago, L, Tzourio-Mazoyer, N. Distinguishing visuospatial working memory and complex mental calculation areas within the parietal lobes. Neurosci Lett. 2002;331:45–9.CrossRefGoogle ScholarPubMed
Brodmann, K. Vergleichende Lokalisationslehre der Groβhirnrinde-in ihren prinzipien dargestellt auf Grund des zellenbaues. Leipzig (Germany): Verlag von Johann Ambrosius Barth; 1909.Google Scholar
Jones, EG, Coulter, JD, Hendry, SH. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol. 1978;181:291347.CrossRefGoogle ScholarPubMed
Mountcastle, VB, Lynch, JC, Georgopoulos, A, Sakata, H, Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol. 1975;38:871908.CrossRefGoogle ScholarPubMed
Pandya, DN, Seltzer, B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol. 1982;204:196210.CrossRefGoogle ScholarPubMed
Battaglia-Mayer, A, Caminiti, R. Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. Brain. 2002;125:225–37.CrossRefGoogle ScholarPubMed
Caminiti, R, Ferraina, S, Johnson, PB. The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex. 1996;6:319–28.CrossRefGoogle Scholar
Marconi B, Genovesio A, Battaglia-Mayer A, Ferraina S, Squatrito S, Molinari M, Lacquaniti F, Caminiti R. Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb Cortex. 2001;11:513–27.CrossRefGoogle Scholar
Vuilleumier, P, Reverdin, A, Landis, T. Four legs: illusory reduplication of the lower limbs after bilateral parietal lobe damage. Arch Neurol. 1997;54:1543–7.CrossRefGoogle ScholarPubMed
Daprati, E, Sirigu, A, Nico, D. Body and movement: consciousness in the parietal lobes. Neuropsychologia. 2010;48:756–62.CrossRefGoogle ScholarPubMed
Wang, J, Yang, Y, Fan, L, et al. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Hum Brain Mapp. 2015;36:238–57.CrossRefGoogle ScholarPubMed
Kumral, E, Ozkaya, B, Sagduyu, A, Sirin, H, Vardarli, E, Pehlivan, M. The ege stroke registry: a hospital-based study in the Aegean Region, Izmir. Turkey Cerebrovasc Dis. 1998;8:278–88.CrossRefGoogle ScholarPubMed
Adams, HP Jr., Bendixen, BH, Kappelle, LJ, et al. Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial: TOAST trial of org 10172 in acute stroke treatment. Stroke. 1993;24:3541.CrossRefGoogle Scholar
Wu, Y, Wang, J, Zhang, Y, et al. The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Front Neuroanat. 2016;10:32.CrossRefGoogle ScholarPubMed
Mesulam, M-M. Attentional networks, confusional states, and neglect syndromes. In: Mesulam, M-M, editors. Principles of behavioral and cognitive neurology. Oxford University Press; 2000, pp. 174356.Google Scholar
Leech, R, Kamourieh, S, Beckmann, CF, Sharp, DJ. Fractioning the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci. 2011;31:3217–24.CrossRefGoogle ScholarPubMed
Selemon, LD, Goldman-Rakic, PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behaviour. J Neurosci. 1988;8:4049–68.CrossRefGoogle Scholar
Maguire, EA, Cipolotti, L. Selective sparing of topographical memory. J Neurol Neurosurg Psychiatry. 1998;65:903–9.CrossRefGoogle ScholarPubMed
della Rocchetta, AIncisa, Cipolotti, L, Warrington, EK. Topographical disorientation: selective impairment of locomotor space? Cortex. 1996;32:727–35.CrossRefGoogle Scholar
LaBar, KS, Gitelman, DR, Parrish, TB, Mesulam, M. Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage. 1999;10:695704.CrossRefGoogle ScholarPubMed
Koenigs, M, Barbey, AK, Bradley, BR, Grafman, J. Superior parietal cortex is critical for the manipulation of information in working memory. J Neurosci. 2009;29:14980–6.CrossRefGoogle ScholarPubMed
Feinberg, TE, Venneri, A, Simone, AM, Fan, Y, Northoff, G. The neuroanatomy of asomatognosia and somatoparaphrenia. J Neurol Neurosurg Psychiatry. 2010;81:276–81.CrossRefGoogle ScholarPubMed
Weijers, NR, Rietveld, A, Meijer, A, De Leeuw, FE. Macrosomatognosia in frontal lobe infarct: a case report. J Neurol. 2013;260:925926.CrossRefGoogle ScholarPubMed
Vallar, G, Ronchi, R. Somatoparaphrenia: a body delusion. a review of the europsychological literature. Exp Brain Res. 2009;192:533–51.CrossRefGoogle ScholarPubMed
Vuilleumier, P, Reverdin, A, Landis, T. Four legs: illusory reduplication of the lower limbs after bilateral parietal lobe damage. Arch Neurol. 1997;54:1543–7.CrossRefGoogle ScholarPubMed
Graziano, MS. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci. 1999;96:10418–21.CrossRefGoogle ScholarPubMed
McGeoch, PD, Brang, D, Song, T, Lee, RR, Huang, Ramachandran, VS. Xenomelia: a new right parietal lobe syndrome. J Neurol Neurosurg Psychiatry. 2011;82:1314–9.CrossRefGoogle ScholarPubMed
Auerbach, SH, Alexander, MP. Pure agraphia and unilateral optic ataxia associated with a left superior parietal lobule lesion. J Neurol Neurosurg Psychiatry. 1981;44:430–2.CrossRefGoogle ScholarPubMed
Paolino, E, De Bastiani, P, Monetti, VC, Boidrini, P, Rosati, G. Pure “aphasic” agraphia due to damage of the left superior parietal lobule. Ital J Neurol Sci. 1983;2:233–7.CrossRefGoogle Scholar
Karnath, H-O, Perenin, M-T. Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb Cortex. 2005;15:1561–9.CrossRefGoogle ScholarPubMed