Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-12T15:05:16.461Z Has data issue: false hasContentIssue false

Atrial septal defect-associated pulmonary hypertension with decompensated heart failure: outcomes after fenestrated device closure

Published online by Cambridge University Press:  19 July 2023

Ahmed Deniwar
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA
Jason Hernandez
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
Enrique O. Aregullin
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
Sana K. Khan
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA
Sihong Huang
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
Michael T. Finn
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
Joseph J. Vettukattil*
Affiliation:
Betz Congenital Heart Center, Helen DeVos Children’s Hospital of Spectrum Health Hospital, Grand Rapids, MI, USA Pediatrics and Human Development, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
*
Corresponding author: Joseph J. Vettukattil; Email: dr.vettukttil@gmail.com

Abstract

Background:

Up to 90% of adults with untreated atrial septal defect will be symptomatic by 4th decade, and 30-49% will develop heart failure. 8–10% of these patients have pulmonary arterial hypertension with a female predominance regardless of age. We aimed to demonstrate that fenestrated closure can be safely performed in patients with decompensated heart failure and atrial septal defect-associated pulmonary arterial hypertension with improved outcome.

Methods:

Transcatheter fenestrated atrial septal defect closures (Occlutech GmbH, Jena, Germany) were performed on a compassionate-use basis in 5 consecutive adult patients with atrial septal defect-associated pulmonary arterial hypertension and severe heart failure with prohibitive surgical mortality risks. Change in systemic oxygen saturation, 6-minute walk test, NYHA class, echocardiographic and haemodynamic parameters were used as parameters of outcome.

Results:

All patients were female, mean age 48.8 ± 13.5 years, followed up for a median of 29 months (max 64 months). Significant improvements observed in the 6-minute walk test, and oxygen saturation comparing day 0 time point to all other follow-up time points data (B = 1.32, SE = 0.28, t (22.7) = -4.77, p = 0.0001); and in the haemodynamic data (including pulmonary vascular resistance and pulmonary pressure) (B = –0.60, SE = 0.22, t (40.2) = 2.74, p = .009). All patients showed improved right ventricular size and function along with NYHA class. There were no procedure-related complications.

Conclusion:

Fenestrated atrial septal defect closure is feasible in adults with decompensated heart failure and atrial septal defect-associated pulmonary arterial hypertension. It results in sustained haemodynamic and functional improvement

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Article last updated 23rd August 2023.

References

Engelfriet, P, Meijboom, F, Boersma, E, Tijssen, J, Mulder, B. Repaired and open atrial septal defects type II in adulthood: an epidemiological study of a large european cohort. (in eng), Int J Cardiol 2008; 126: 379385. DOI: 10.1016/j.ijcard.2007.04.044.CrossRefGoogle Scholar
Tesorio, T, Salemme, L, Verdoliva, S, Ferrone, M, Tesorio, P, Onorato, EMaria. Partial closure with a self-made fenestrated device of secundum atrial septal defect with severe pulmonary artery hypertension in adults. J Geriatr Cardiol 2021; 18: 498504. DOI: 10.11909/j.issn.1671-5411.2021.06.009.Google ScholarPubMed
Vogel, M, Berger, F, Kramer, A, Alexi-Meshkishvili, V, Lange, PE. Incidence of secondary pulmonary hypertension in adults with atrial septal or sinus venosus defects. Heart 1999; 82: 3033. DOI: 10.1136/hrt.82.1.30.CrossRefGoogle ScholarPubMed
Micheletti, A, et al. Role of atrial septostomy in the treatment of children with pulmonary arterial hypertension. Heart 2006; 92: 969972. DOI: 10.1136/hrt.2005.077669.CrossRefGoogle ScholarPubMed
Stout, KK, et al. AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol 2018; 73: e81e192. DOI: 10.1016/j.jacc.2018.08.1029.CrossRefGoogle Scholar
D’Alto, M, et al. Hemodynamics of patients developing pulmonary arterial hypertension after shunt closure. Int J Cardiol 2013; 168: 37973801. DOI: 10.1016/j.ijcard.2013.06.036.CrossRefGoogle ScholarPubMed
Samuel, BP, Al-Khatib, Y, Peacock-McKenzie, REGirgis, Vettukattil, JJ. Use of Occlutech Fenestrated Atrial Septal Defect Occluder in ASD-Associated Pulmonary Arterial Hypertension. In Congenital cardiology today: www.CongenitalCardiologyToday.com. vol. 15, Edition. North American, 2017: 18.Google Scholar
Patel, MB, Samuel, BP, Girgis, RE, Parlmer, MA, Vettukattil, JJ. Implantable atrial flow regulator for severe, irreversible pulmonary arterial hypertension. EuroIntervention 2015; 11: 706709. DOI: 10.4244/eijy15m07_08.CrossRefGoogle ScholarPubMed
Ewert, P, et al. Masked left ventricular restriction in elderly patients with atrial septal defects: a contraindication for closure? Catheter Cardiovasc Interv 2001; 52: 177180. DOI: 10.1002/1522-726x(200102)52.3.0.CO;2-G>CrossRefGoogle Scholar