Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-10-31T12:56:58.439Z Has data issue: false hasContentIssue false

Fractal correlations and linear analyses of heart rate variability in healthy young people with different levels of physical activity

Published online by Cambridge University Press:  02 September 2019

Íbis A. P. Moraes*
Affiliation:
Graduate Program in Rehabilitation Sciences of the School of Medicine, University of São Paulo - USP, São Paulo, Brazil Department of Physical Therapy, Mackenzie Presbyterian University, São Paulo, Brazil
Talita D. Silva
Affiliation:
Graduate Program in Rehabilitation Sciences of the School of Medicine, University of São Paulo - USP, São Paulo, Brazil Department of Cardiology, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
Thais Massetti
Affiliation:
Graduate Program in Rehabilitation Sciences of the School of Medicine, University of São Paulo - USP, São Paulo, Brazil
Lilian D. C. Menezes
Affiliation:
Department of Cardiology, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
Vivian F. Ribeiro
Affiliation:
Department of Cardiology, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
Ligia M. C. C. Tropiano
Affiliation:
Department of Physical Therapy, Mackenzie Presbyterian University, São Paulo, Brazil
Viviani Barnabé
Affiliation:
Medical School, University City of Sao Paulo - UNICID, São Paulo, Brazil
Rosangela A. Hoshi
Affiliation:
University Hospital, University of São Paulo - USP, São Paulo, Brazil
Carlos B. M. Monteiro
Affiliation:
Graduate Program in Rehabilitation Sciences of the School of Medicine, University of São Paulo - USP, São Paulo, Brazil
Marcelo Fernandes
Affiliation:
Department of Physical Therapy, Mackenzie Presbyterian University, São Paulo, Brazil
*
Author for correspondence: Í. A. P. Moraes, Faculty of Medicine, University of São Paulo, Cipotânea, 51, Cidade Universitária, São Paulo, SP 05360-160, Brazil. Tel: +55 11 95559 4329; Fax: +55 11 3085.3452; E-mail: ibisariana@yahoo.com.br

Abstract

Changes in cardiac autonomic regulation, expressed by increased sympathetic activity and decreased heart rate variability, have an important relationship with the onset of lethal cardiac phenomena. Therefore, we aimed to evaluate the cardiac autonomic behaviour in young people according to their level of physical activity. Through the International Physical Activity Questionnaire, 55 healthy young non-smokers with no history of previous diseases and whose parents did not suffer from metabolic syndrome were assessed and divided into groups: sedentary (n=12), insufficiently active (n=16), active (n=14), and very active (n=13). We collected respiratory rate, systolic and diastolic blood pressure at rest, and body mass index. Subjects remained supine at rest, and without mental stress for 15 minutes in a controlled environment. Using a cardiofrequency meter (Polar® RS800CX), data were analysed in the time domain, frequency domain, and detrended fluctuation analysis. For the sedentary group, the mean RR and rMSSD were significantly lower, and the insufficiently active group showed higher means, but significantly only for rMSSD. The insufficiently active group showed in the detrended fluctuation analysis that α2 was significantly lower compared with the sedentary, active, and very active groups. We conclude that young, healthy, sedentary individuals present an increased heart rate and that insufficiently active individuals present a decreased fractal correlation and increased parasympathetic activity.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lin, YY, Lu, WA, Hsieh, YC, et al. Effect of position on the residual heart rate variability in patients after orthotopic heart transplantation. J Chin Med Assoc 2017; 80: 6371.CrossRefGoogle ScholarPubMed
Ferreira, JRM, Zanesco, A. Heart rate variability as important approach for assessment autonomic modulation. Motriz Rev Educ Fís 2016; 22: 38.CrossRefGoogle Scholar
Peçanha, T, Paula-Ribeiro, MD, Nasario-Junior, O, Lima, JRPD. Post-exercise heart rate variability recovery: a time-frequency analysis. Acta Cardiol 2013; 68: 607613.CrossRefGoogle ScholarPubMed
Tracy, LM, Ioannou, L, Baker, KS, et al. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016; 157: 729.CrossRefGoogle ScholarPubMed
Gerritsen, J, TenVoorde, BJ, Dekker, JM, et al. Measures of cardiovascular autonomic nervous function: agreement, reproducibility, and reference values in middle age and elderly subjects. Diabetologia 2003; 46: 330338.CrossRefGoogle ScholarPubMed
Buch, AN, John, HC, Townend, JN. Mortality, cardiac vagal control and physical training–what’s the link? Exp Physiol 2002; 87: 423435.CrossRefGoogle ScholarPubMed
Taralov, ZZ, Terziyski, KV, Kostianev, SS. Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Med 2015; 57: 173180.CrossRefGoogle ScholarPubMed
Abbate, A, Arena, R, Abouzaki, N, et al. Heart failure with preserved ejection fraction: refocusing on diastole. Int J Cardiol 2015; 179: 430440.CrossRefGoogle ScholarPubMed
da Silva, TD, Massetti, T, Crocetta, TB, et al. Heart rate variability and cardiopulmonary dysfunction in patients with duchenne muscular dystrophy: a systematic review. Pediatric Cardiol 2018; 39: 869883.CrossRefGoogle ScholarPubMed
de Carvalho, TD, de Abreu, LC, Mustacchi, Z, et al. Cardiac autonomic modulation of children with Down syndrome. Pediatric Cardiol 2015; 36: 344349.CrossRefGoogle ScholarPubMed
Carvalho, TD, Massetti, T, Silva, TDD, et al. Heart rate variability in individuals with Down syndrome - a systematic review and meta-analysis. Auton Neurosci 2018; 213: 2333.CrossRefGoogle ScholarPubMed
Oliveira, EA, Silva, AKFD, Christofaro, DGD, et al. Influence of type 1 diabetes on the symbolic analysis and complexity of heart rate variability in young adults. Arq Bras Cardiol 2018; 111: 94101.Google ScholarPubMed
Arab, C, Vanderlei, LCM, da Silva Paiva, L, et al. Cardiac autonomic modulation impairments in advanced breast cancer patients. Clin Res Cardiol 2018; 107: 924936.CrossRefGoogle ScholarPubMed
Thayer, JF, Shelby, SY, Jos, FB. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 2010; 141: 122131.CrossRefGoogle ScholarPubMed
Poitras, VJ, Gray, CE, Borghese, MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab 2016; 41: S197S239.CrossRefGoogle ScholarPubMed
Wu, XY, Kirk, SFL, Ohinmaa, A, Veugelers, PJ. The importance of health behaviours in childhood for the development of internalizing disorders during adolescence. BMC Psychol 2017; 5: 38.CrossRefGoogle ScholarPubMed
Parvaneh, S, Howe, CL, Toosizadeh, N, et al. Regulation of cardiac autonomic nervous system control across frailty statuses: a systematic review. Gerontology 2016; 62: 315.CrossRefGoogle Scholar
Byberg, L, Melhus, H, Gedeborg, R, et al. Total mortality after changes in leisure time physical activity in 50 year old men: 35 year follow-up of population based cohort. BMJ 2009; 338: b688.CrossRefGoogle ScholarPubMed
Grassi, G, Mark, A, Esler, M. The sympathetic nervous system alterations in human hypertension. Circ Res 2015; 116: 976990.CrossRefGoogle ScholarPubMed
Figueiredo, R, Pereira, R, Neto, OP. Nonlinear analysis is the most suitable method to detect changes in heart autonomic control after exercise of different durations. Comput Biol Med 2018; 97: 8388.CrossRefGoogle ScholarPubMed
Buchheit, M, Simon, C, Charloux, A, et al. Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med Sci Sports Exerc 2005; 37: 15301534.CrossRefGoogle ScholarPubMed
Soares-Miranda, L, Sandercock, G, Vale, S, et al. Benefits of achieving vigorous as well as moderate physical activity recommendations: evidence from heart rate complexity and cardiac vagal modulation. J Sports Sci 2011; 29: 10111018.CrossRefGoogle ScholarPubMed
Bernardi, L, Valle, F, Coco, M, Calciati, A, Sleight, P. Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc Res 1996; 32: 234237.CrossRefGoogle ScholarPubMed
Melanson, EL. Resting heart rate variability in men varying in habitual physical activity. Med Sci Sports Exerc 2000; 32: 18941901.CrossRefGoogle ScholarPubMed
Prinsloo, GE, Rauch, HGL, Derman, WE. A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. Phys Sports Med 2014; 42: 8899.CrossRefGoogle ScholarPubMed
Guedes, DP, Lopes, CC, Guedes, JERP. Reprodutibilidade e validade do Questionário Internacional de Atividade Física em adolescentes. Rev Bras Med Esporte 2005; 11: 151158.CrossRefGoogle Scholar
Silva, GSF, Bergamaschine, R, Rosa, M, Melo, C. Avaliação do nível de atividade física de estudantes de graduação das áreas saúde/biológica. Rev Bras Med Esporte 2007; 13: 3942.CrossRefGoogle Scholar
Gamelin, FX, Berthoin, S, Bosquet, L. Validity of the polar S810 heart rate monitor to measure RR intervals at rest. Med Sci Sports Exerc 2006; 38: 887893.CrossRefGoogle Scholar
Kingsley, M, Lewis, MJ, Marson, RE. Comparison of polar 810 s and an ambulatory ECG system for RR interval measurement during progressive exercise. Int J Sports Med 2005; 26: 3944.CrossRefGoogle Scholar
Godoy, M, Takakura, IT, Correa, PR. Relevância da análise do comportamento dinâmico não-linear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arq Ciênc Saúde 2005; 12: 167171.Google Scholar
Peng, CK, Havlin, S, Stanley, HE, Goldberger, AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 8287.CrossRefGoogle ScholarPubMed
Goldberger, AL, Amaral, LA, Glass, L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101: e215e220.CrossRefGoogle ScholarPubMed
Zuttin, RS, Moreno, MA, César, MC, Martins, LEB, Catai, AM, Silva, E. Avaliação da modulação autonômica da freqüência cardíaca nas posturas supina e sentada de homens jovens sedentários. Rev Bras Fisioter 2008; 12: 712.CrossRefGoogle Scholar
Vanderlei, LCM, Pastre, CM, Hoshi, RA, de Carvalho, TD, de Godoy, MF. Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Revista Brasileira de Cirurgia Cardiovascular. Braz J Cardiovasc Surg 2009; 24: 205217.CrossRefGoogle Scholar
Valenti, VE, Guida, HL, Frizzo, AC, et al. Auditory stimulation and cardiac autonomic regulation. Clinics 2012; 67: 955958.CrossRefGoogle ScholarPubMed
Perseguini, NM, Takahashi, AC, Rebelatto, JR, et al. Spectral and symbolic analysis of the effect of gender and postural change on cardiac autonomic modulation in healthy elderly subjects. Braz J Med Biol Res 2011; 44: 2937.CrossRefGoogle ScholarPubMed
Jokinen, V, Tapanainen, JM, Seppänen, T, Huikuri, HV. Temporal changes and prognostic significance of measures of heart rate dynamics after acute myocardial infarction in the beta-blocking era. Am J Cardiol 2003; 92: 907912.CrossRefGoogle ScholarPubMed
Huikuri, HV, Mäkikallio, TH, Perkiömäki, J. Measurement of heart rate variability by methods based on nonlinear dynamics. J Electrocardiol 2003; 36: 9599.CrossRefGoogle ScholarPubMed
Scheff, JD, Griffel, B, Corbett, SA, Calvano, SE, Androulakis, IP. On heart rate variability and autonomic activity in homeostasis and in systemic inflammation. Math Biosci 2014; 252: 3644.CrossRefGoogle ScholarPubMed
de Souza, ACA, Cisternas, JR, de Abreu, LC, et al. Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int Arch Med 2014; 7: 25.CrossRefGoogle ScholarPubMed
Panda, K, Krishna, P. Physical exercise and cardiac autonomic activity in healthy adult men. Indian J Physiol Pharmacol 2014; 58: 70.Google ScholarPubMed
Migliaro, ER, Contreras, P, Bech, S, et al. Relative influence of age, resting heart rate and sedentary life style in short-term analysis of heart rate variability. Braz J Med Biol Res 2001; 34: 493500.CrossRefGoogle ScholarPubMed
Kawaguchi, LYA, Nascimento, ACP, Lima, MS, et al. Caracterização da variabilidade de freqüência cardíaca e sensibilidade do barorreflexo em indivíduos sedentários e atletas do sexo masculino. Rev Bras Med Esporte 2007; 13: 207212.CrossRefGoogle Scholar
Hoshi, RA, Vanderlei, LCM, de Godoy, MF, et al. Temporal sequence of recovery-related events following maximal exercise assessed by heart rate variability and blood lactate concentration. Clin Physiol Funct Imaging 2017; 37: 536543.CrossRefGoogle ScholarPubMed
Hsin, H, Yang, CY, Yeih, DF, Shieh, JS, Li, AH. The detrended fluctuation analysis of acute-phase heart-rate variability in acute coronary syndromes - a pilot study. Int J Cardiol 2010; 140: 252255.CrossRefGoogle ScholarPubMed
Task force of the European Society of Cardiology, The North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 10431065.CrossRefGoogle Scholar
Silva, EL, Pereira, R, Reis, LN, et al. Heart rate detrended fluctuation indexes as estimate of obstructive sleep apnea severity. Medicine (Baltimore) 2015; 94: e516.CrossRefGoogle ScholarPubMed
Sen, J, McGill, D. Fractal analysis of heart rate variability as a predictor of mortality: a systematic review and meta-analysis. Chaos 2018; 28: 072101.CrossRefGoogle ScholarPubMed
Acharya, UR, Paul Joseph, K, Kannathal, N, Lim, CM, Suri, JS. Heart rate variability: a review. Med Biol Eng Comput 2006; 44: 10311051.CrossRefGoogle Scholar
Hoshi, RA, Pastre, CM, Vanderlei, LC, Godoy, MF. Poincaré plot indexes of heart rate variability: relationships with other nonlinear variables. Auton Neurosci Basic Clin 2013; 177: 271274.CrossRefGoogle ScholarPubMed
Vanderlei, LCM, Pastre, CM, Júnior, IF, de Godoy, MF. Fractal correlation of heart rate variability in obese children. Auton Neurosci Basic Clin 2010; 155: 125129.CrossRefGoogle ScholarPubMed
Rossi, RC, Vanderlei, FM, Bernardo, AF, et al. Effect of pursed-lip breathing in patients with COPD: Linear and nonlinear analysis of cardiac autonomic modulation. COPD 2014; 11: 3945.CrossRefGoogle ScholarPubMed
Garcia, LMT, Osti, R, Ribeiro, EHC, Florindo, AF. Validação de dois questionários para a avaliação da atividade física em adultos. Rev Bras Atividade Fís Saúde 2013; 18: 317.Google Scholar
Zanchetta, LM, Barros, MB, César, CL. Physical inactivity and associated factors in adults, São Paulo, Brazil. Rev Bras Epidemiol 2010; 13: 387399.CrossRefGoogle Scholar
Haskell, WL, Lee, IM, Pate, RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007; 116: 1081.Google ScholarPubMed
Lopes, FL, Pereira, FM, Reboredo, MM, Castro, TM. Redução da variabilidade da freqüência cardíaca em indivíduos de meia-idade e o efeito do treinamento de força. Rev Bras Fisioter 2007; 11: 113119.CrossRefGoogle Scholar
Dutra, SG, Pereira, APM, Tezini, GC, Mazon, JH, Martins-Pinge, MC, Souza, HC. Cardiac autonomic modulation is determined by gender and is independent of aerobic physical capacity in healthy subjects. PLoS One 2013; 8: e77092.CrossRefGoogle ScholarPubMed
Sotiriou, P, Kouidi, E, Samaras, T, Deligiannis, A. Linear and non-linear analysis of heart rate variability in master athletes and healthy middle-aged non-athletes. Med Eng Phys 2013; 35: 16761681.CrossRefGoogle ScholarPubMed
Plews, DJ, Laursen, PB, Kilding, AE, Buchheit, M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform 2014; 9: 10261032.CrossRefGoogle ScholarPubMed