Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-10-31T22:49:57.592Z Has data issue: false hasContentIssue false

Incidence and predictors of epilepsy in children with congenital heart disease

Part of: Surgery

Published online by Cambridge University Press:  09 August 2021

Carlos Castillo-Pinto*
Affiliation:
Department of Neurology, Children’s National Hospital, Washington, DC, USA
Jessica L. Carpenter
Affiliation:
Department of Neurology, Children’s National Hospital, Washington, DC, USA
Mary T. Donofrio
Affiliation:
Division of Pediatric Cardiology, Children’s National Hospital, Washington, DC, USA
Anqing Zhang
Affiliation:
Division of Biostatistics and Study Methodology, Children’s National Hospital, Washington, DC, USA
Gil Wernovsky
Affiliation:
Division of Pediatric Cardiology, Children’s National Hospital, Washington, DC, USA Division of Cardiac Critical Care, Children’s National Hospital, Washington, DC, USA
Pranava Sinha
Affiliation:
Division of Cardiovascular Surgery, Children’s National Hospital, Washington, DC, USA
Dana Harrar
Affiliation:
Department of Neurology, Children’s National Hospital, Washington, DC, USA
*
Author for correspondence: C. Castillo-Pinto, MD, Department of Neurology, Division of Clinical Neurophysiology, Nicklaus Children’s Hospital, 3100 SW 62nd Ave, Miami, FL33155, USA. Tel: +1 7866242891; Fax: +1 3056696531. E-mail: ccastillopinto@gmail.com

Abstract

Objective:

Children with CHD may be at increased risk for epilepsy. While the incidence of perioperative seizures after surgical repair of CHD has been well-described, the incidence of epilepsy is less well-defined. We aim to determine the incidence and predictors of epilepsy in patients with CHD.

Methods:

Retrospective cohort study of patients with CHD who underwent cardiopulmonary bypass at <2 years of age between January, 2012 and December, 2013 and had at least 2 years of follow-up. Clinical variables were extracted from a cardiac surgery database and hospital records. Seizures were defined as acute if they occurred within 7 days after an inciting event. Epilepsy was defined based on the International League Against Epilepsy criteria.

Results:

Two-hundred and twenty-one patients were identified, 157 of whom were included in our analysis. Five patients (3.2%) developed epilepsy. Acute seizures occurred in 12 (7.7%) patients, only one of whom developed epilepsy. Predictors of epilepsy included an earlier gestational age, a lower birth weight, a greater number of cardiac surgeries, a need for extracorporeal membrane oxygenation or a left ventricular assist device, arterial ischaemic stroke, and a longer hospital length of stay.

Conclusions:

Epilepsy in children with CHD is rare. The mechanism of epileptogenesis in these patients may be the result of a complex interaction of patient-specific factors, some of which may be present even before surgery. Larger long-term follow-up studies are needed to identify risk factors associated with epilepsy in these patients.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 18901900.10.1016/S0735-1097(02)01886-7CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172.10.1161/CIR.0b013e318265ee8aCrossRefGoogle ScholarPubMed
Clancy, RR, McGaurn, SA, Wernovsky, G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics 2003; 111: 592601.10.1542/peds.111.3.592CrossRefGoogle ScholarPubMed
Clancy, RR, Sharif, U, Ichord, R, et al. Electrographic neonatal seizures after infant heart surgery. Epilepsia 2005; 46: 8490.10.1111/j.0013-9580.2005.22504.xCrossRefGoogle ScholarPubMed
Gaynor, JW, Nicolson, SC, Jarvik, GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg 2005; 130: 12781286.10.1016/j.jtcvs.2005.02.065CrossRefGoogle ScholarPubMed
Ghosh, S, Philip, J, Patel, N, et al. Risk factors for seizures and epilepsy in children with congenital heart disease. J Child Neurol 2020; 35: 442447.10.1177/0883073820904912CrossRefGoogle ScholarPubMed
Gunn, JK, Beca, J, Hunt, RW, Olischar, M, Shekerdemian, LS. Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med 2012; 38: 15391547.10.1007/s00134-012-2608-yCrossRefGoogle ScholarPubMed
Helmers, S, Wypij, D, Constantinou, J, et al. Perioperative electroencephalographic seizures in infants undergoing repair of complex congenital cardiac defects. Electroencephalogr Clin Neurophysiol 1997; 102: 2736.10.1016/S0013-4694(96)95079-8CrossRefGoogle ScholarPubMed
Karl, TR, Hall, S, Ford, G, et al. Arterial switch with full-flow cardiopulmonary bypass and limited circulatory arrest: neurodevelopmental outcome. J Thorac Cardiovasc Surg 2004; 127: 213222.10.1016/j.jtcvs.2003.06.001CrossRefGoogle ScholarPubMed
Desnous, B, Lenoir, M, Doussau, A, et al. Epilepsy and seizures in children with congenital heart disease: a prospective study. Seizure 2019; 64: 5053.10.1016/j.seizure.2018.11.011CrossRefGoogle ScholarPubMed
Wang, C, Weng, W, Chang, L, et al. Increased prevalence of inattention-related symptoms in a large cohort of patients with congenital heart disease. Eur Child Adolesc Psychiatry 2021; 30: 647655.10.1007/s00787-020-01547-yCrossRefGoogle Scholar
Hansen, E, Poole, TA, Nguyen, V, et al. Prevalence of ADHD symptoms in patients with congenital heart disease. Pediatr Int 2012; 54: 838843.10.1111/j.1442-200X.2012.03711.xCrossRefGoogle ScholarPubMed
Rappaport, LA, Wypij, D, Bellinger, DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Circulation 1998; 97: 773779.10.1161/01.CIR.97.8.773CrossRefGoogle ScholarPubMed
Sigmon, ER, Kelleman, M, Susi, A, Nylund, CM, Oster, ME. Congenital heart disease and autism: a case-control study. Pediatrics 2019; 144: e20184114.10.1542/peds.2018-4114CrossRefGoogle Scholar
Leisner, MZ, Madsen, NL, Ostergaard, JR, Woo, JG, Marino, BS, Olsen, MS. Congenital heart defects and risk of epilepsy: a population-based cohort study. Circulation 2016; 134: 16891691.10.1161/CIRCULATIONAHA.116.024538CrossRefGoogle ScholarPubMed
Massin, MM, Astadicko, I, Dessy, H. Noncardiac comorbidities of congenital heart disease in children. Acta paediatr 2007; 96: 753755.10.1111/j.1651-2227.2007.00275.xCrossRefGoogle ScholarPubMed
Fisher, RS, Acevedo, C, Arzimanoglou, A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia 2014; 55: 475482.10.1111/epi.12550CrossRefGoogle ScholarPubMed
Jacobs, ML, Mayer, JE Jr. Congenital heart surgery nomenclature and database project: single ventricle. Ann Thorac Surg 2000; 69: 197204.10.1016/S0003-4975(99)01245-XCrossRefGoogle ScholarPubMed
O'Brien, SM, Clarke, DR, Jacobs, JP, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg 2009; 138: 11391153.10.1016/j.jtcvs.2009.03.071CrossRefGoogle ScholarPubMed
Chong, DJ, Hirsch, LJ. Which EEG patterns warrant treatment in the critically ill? reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol 2005; 22: 7991.10.1097/01.WNP.0000158699.78529.AFCrossRefGoogle ScholarPubMed
Payne, ET, Zhao, XY, Frndova, H, et al. Seizure burden is independently associated with short term outcome in critically ill children. Brain 2014; 137: 14291438.10.1093/brain/awu042CrossRefGoogle ScholarPubMed
Topjian, AA, Gutierrez-Colina, AM, Sanchez, SM, et al. Electrographic status epilepticus is associated with mortality and worse short-term outcome in critically ill children. Crit Care Med 2013; 41: 215223.10.1097/CCM.0b013e3182668035CrossRefGoogle ScholarPubMed
Abend, NS, Arndt, DH, Carpenter, JL, et al. Electrographic seizures in pediatric ICU patients: cohort study of risk factors and mortality. Neurology 2013; 81: 383391.10.1212/WNL.0b013e31829c5cfeCrossRefGoogle ScholarPubMed
Pisani, F, Cerminara, C, Fusco, C, Sisti, L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology 2007; 69: 21772185.10.1212/01.wnl.0000295674.34193.9eCrossRefGoogle ScholarPubMed
Billinghurst, LL, Beslow, LA, Abend, NS, et al. Incidence and predictors of epilepsy after pediatric arterial ischemic stroke. Neurology 2017; 88: 630637.10.1212/WNL.0000000000003603CrossRefGoogle ScholarPubMed
Beghi, E, Carpio, A, Forsgren, L, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia 2010; 51: 671675.10.1111/j.1528-1167.2009.02285.xCrossRefGoogle ScholarPubMed
Glass, HC, Hong, KJ, Rogers, EE, et al. Risk factors for epilepsy in children with neonatal encephalopathy. Pediatr Res 2011; 70: 535540.10.1203/PDR.0b013e31822f24c7CrossRefGoogle ScholarPubMed
Harris, PA, Taylor, R, Thielke, R, Payne, J, Gonzalez, N, Conde, JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42: 377381.10.1016/j.jbi.2008.08.010CrossRefGoogle ScholarPubMed
Billett, J, Cowie, MR, Gatzoulis, MA, Vonder Muhll, IF, Majeed, A. Comorbidity, healthcare utilisation and process of care measures in patients with congenital heart disease in the UK: cross-sectional, population-based study with case-control analysis. Heart 2008; 94: 11941199.10.1136/hrt.2007.122671CrossRefGoogle ScholarPubMed
Newburger, JW, Jonas, RA, Wernovsky, G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med 1993; 329: 10571064.10.1056/NEJM199310073291501CrossRefGoogle ScholarPubMed
Naim, MY, Gaynor, JW, Chen, J, et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J Thorac Cardiovasc Surg 2015; 150: 169180.10.1016/j.jtcvs.2015.03.045CrossRefGoogle ScholarPubMed
Frey, LC. Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 2003; 44: 1117.10.1046/j.1528-1157.44.s10.4.xCrossRefGoogle ScholarPubMed
Beslow, LA, Abend, NS, Gindville, MC, et al. Pediatric intracerebral hemorrhage: acute symptomatic seizures and epilepsy. JAMA Neurol 2013; 70: 448454.10.1001/jamaneurol.2013.1033CrossRefGoogle ScholarPubMed
Zhen, J, Wang, W, Zhou, J, et al. Chronic intermittent hypoxic preconditioning suppresses pilocarpine-induced seizures and associated hippocampal neurodegeneration. Brain Res 2014; 1563: 122130.10.1016/j.brainres.2014.03.032CrossRefGoogle ScholarPubMed
Xie, Y, Qin, S, Zhang, R, et al. The effects of high-altitude environment on brain function in a seizure model of young-aged rats. Front Pediatr 2020; 8: 561.10.3389/fped.2020.00561CrossRefGoogle Scholar
Bellinger, DC, Jonas, RA, Rappaport, LA, et al. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549555.10.1056/NEJM199503023320901CrossRefGoogle ScholarPubMed
Xiong, T, Gonzalez, F, Mu, D. An overview of risk factors for poor neurodevelopmental outcome associated with prematurity. World J Pediatr 2012; 8: 293300.10.1007/s12519-012-0372-2CrossRefGoogle ScholarPubMed
Clancy, RR, McGaurn, SA, Wernovsky, G, et al. Preoperative risk-of-death prediction model in heart surgery with deep hypothermic circulatory arrest in the neonate. J Thorac Cardiovasc Surg 2000; 119: 347357.10.1016/S0022-5223(00)70191-7CrossRefGoogle ScholarPubMed
Kornilov, IA, Sinelnikov, YS, Soinov, IA, et al. Outcomes after aortic arch reconstruction for infants: deep hypothermic circulatory arrest versus moderate hypothermia with selective antegrade cerebral perfusion. Eur J Cardiothorac Surg 2015; 48: e45e50.10.1093/ejcts/ezv235CrossRefGoogle ScholarPubMed
Donofrio, MT, Massaro, AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome. Int J Pediatr 2010; 2010: 113.10.1155/2010/359390CrossRefGoogle ScholarPubMed
Peer, SM, d'Udekem, Y. Commentary: Will fetal brain magnetic resonance imaging guide our timing of surgery for hypoplastic left heart syndrome and transposition of the great arteries? J Thorac Cardiovasc Surg 2020;S0022-5223(20)32999-8. doi: 10.1016/j.jtcvs.2020.10.109.CrossRefGoogle Scholar
Wernovsky, G, Licht, DJ. Neurodevelopmental outcomes in children with congenital heart disease-what can we impact? Pediatr Crit Care Med 2016; 17: S232S242.10.1097/PCC.0000000000000800CrossRefGoogle ScholarPubMed
Hirvonen, M, Ojala, R, Korhonen, P, et al. The incidence and risk factors of epilepsy in children born preterm: a nationwide register study. Epilepsy Res 2017; 138: 3238.10.1016/j.eplepsyres.2017.10.005CrossRefGoogle ScholarPubMed
Li, W, Peng, A, Deng, S, et al. Do premature and postterm birth increase the risk of epilepsy? An updated meta-analysis. Epilepsy Behav 2019; 97: 8391.10.1016/j.yebeh.2019.05.016CrossRefGoogle ScholarPubMed
Glauser, TA, Rorke, LB, Weinberg, PM, Clancy, RR. Congenital brain anomalies associated with the hypoplastic left heart syndrome. Pediatrics 1990; 85: 984990.10.1542/peds.85.6.984CrossRefGoogle ScholarPubMed
Jones, M. Anomalies of the brain and congenital heart disease: a study of 52 necropsy cases. Pediatr Pathol 1991; 11: 721736.10.3109/15513819109065468CrossRefGoogle ScholarPubMed
Golomb, MR, Garg, BP, Carvalho, KS, Johnson, CS, Williams, LS. Perinatal stroke and the risk of developing childhood epilepsy. J Pediatr 2007; 151: 409413.e2.10.1016/j.jpeds.2007.03.058CrossRefGoogle ScholarPubMed
Laugesaar, R, Vaher, U, Lõo, S, et al. Epilepsy after perinatal stroke with different vascular subtypes. Epilepsia Open 2018; 3: 193202.10.1002/epi4.12104CrossRefGoogle ScholarPubMed
Pierpont, ME, Brueckner, M, Chung, WK, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation 2018; 138: e653e711.10.1161/CIR.0000000000000606CrossRefGoogle ScholarPubMed
Towbin, J, Roberts, R. Cardiovascular diseases due to genetic abnormalities, The Heart Arteries and Veins, 8th edn. McGraw-Hill, New York, 1994, p. 17251759.Google Scholar
Shellhaas, RA, Chang, T, Tsuchida, T, et al. The American Clinical Neurophysiology Society’s guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol 2011; 28: 611617.10.1097/WNP.0b013e31823e96d7CrossRefGoogle ScholarPubMed
Gaynor, JW, Stopp, C, Wypij, D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015; 135: 816825.10.1542/peds.2014-3825CrossRefGoogle ScholarPubMed
Supplementary material: File

Castillo-Pinto et al. supplementary material

Table S1
Download Castillo-Pinto et al. supplementary material(File)
File 18.4 KB
Supplementary material: File

Castillo-Pinto et al. supplementary material

Table S2

Download Castillo-Pinto et al. supplementary material(File)
File 15.8 KB