Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T00:36:13.067Z Has data issue: false hasContentIssue false

Differential Settling Tendencies of Clay Minerals in Saline Waters

Published online by Cambridge University Press:  01 January 2024

U. Grant Whitehouse
Affiliation:
Agricultural and Mechanical College of Texas, College Station, Texas, USA
Lela M. Jeffrey
Affiliation:
Agricultural and Mechanical College of Texas, College Station, Texas, USA
James D. Debbrecht
Affiliation:
Agricultural and Mechanical College of Texas, College Station, Texas, USA

Abstract

Differential settling velocities of individual clay mineral types and clay mineral mixtures in quiet saline water are reported for ocean water chlorinity range 0–18‰, brackish water ionic strength range 0.0–0.686 moles-(unit charge)2/kg, temperature range 6–26°C, clay mineral concentration range 0.01–3.6 g/1., and pH range 6.5–9.8. The materials employed included natural deposit clay minerals and clay minerals extracted from marine sedimentary matter and from terrestrial soils.

Settling velocities at 26°C for illitic and kaolinitic materials reached values of 15.8 and 11.8 m/day, respectively, at an ocean water chlorinity of 18‰ and exhibited little dependence upon chlorinity above a chlorinity of 2‰. Settling velocities for montmorillonites were found to be functions of chlorinity over the entire chlorinity range 0–18‰ and to increase exponentially to a limit of 1.3 m/day at 26°C. The settling velocities were determined by pipette analysis, Oden balance techniques, Kelley-Wiegner manometer methods, and spectrophotometric methods, using artificial sea-water and filtered Gulf of Mexico water.

In quiet brackish water, variations in ionic ratio composition alter the settling rates of illites and kaolinites less than 15 percent from such rates in ocean water, at constant, brackish water, ionic strength of 14 or greater. In contrast, montmorillonitic settling rates in such water varied by 40 percent or more from ocean water rates, at constant ionic strength unless the magnesium—potassium or magnesiun-strontium ionic ratios of the brackish water were kept constant. These induced variations were not sufficient in magnitude, however, to change the general relative order of settling rates for the clay minerals.

Decreasing temperatures over the range 26°-6°C decreased settling rates (of all clay types) progressively up to about 40 percent in accordance with temperature-induced changes in the viscosity and density of the saline water medium.

The influences of fifty-seven different organic compounds or materials (carbohydrates and proteins dissolved or dispersed in the water) upon the settling velocities are cited. In general, carbohydrates increased the settling rates of montmorillonitic materials as much as 25 percent, and proteins decreased such rates a maximum of 1–5 percent. Kaolinitic materials suffered a 30–40 percent decrease in settling velocity under the influence of some proteins. So-called “humic acids,” derived from quinone and soil fractions, decreased kaolinitic and montmorillonitic settling rates to lesser extent. No significant alterations of illitic settling rates by organic materials were noted.

Chlorite-montmorillonites were found to settle slightly faster than sodium and calcium montmorillonites. Potassium-saturated montmorillonites settled from two to three times as rapidly as the reference montmorillonites. Chlorite settling rates, of magnitude comparable to rates found for kaolinites, and vermiculite settling rates, comparable at higher chlorinities to illite settling rates, are also reported.

The apparent interaction of illite and montmorillonite to form illitic-montmorillonitic settling entities in some clay mineral mixtures was noted. Other mixtures, exposed to artificial sea-water for 3–6 years, exhibited a tendency to transport 5–20 percent kaolinite within a developed illitic-chloritic mix, when reagitated.

Evidence is also presented to support the argument that clay minerals do not settle in single solid particulate units in saline waters. The effective settling unit, after flocculation, is described as a coacervate, i.e. as a thermodynamically reversible assembly of solid clay particles or strands within a settling solid-rich liquid unit phase. Settling rate increases are thereby not a consequence of any irreversible formation of larger solid particles or solid aggregates by coalescence of fresh water particles at or beyond the fresh-water-saline-water interface.

Differential transport of clay minerals by the turbulent flow of saline water in a pipe is quantitatively described. Flow rates of about 6 miles/hr were required to eliminate differential transport of the clay minerals. Clay mineral concentrations over the range 0.01–15.0 g/l. were considered.

Chemical data, electron and x-ray diffraction data, base exchange data, and electron micrographs support the settling velocity information.

Type
Article
Copyright
Copyright © Clay Minerals Society 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

A joint contribution from the Department of Oceanography and Meteorology and the Electron Microscopy Laboratories, A. and M. College of Texas; Oceanographic and Meteorological Series No. 144 and Electron Microscopy Series No. EM-58-1-10.

References

Abrikosova, I. I. and Derjaguin, B. V. (1956) Direct measurement of molecular attraction between solid bodies in vacuo: Dokl. Akad. Nauk. SSSR, v. 108, pp. 214217.Google Scholar
Aleshin, S. N. (1948) Changes of montmorillonite into hydromica: Dokl. Akad. Nauk. SSSR, v. 61, pp. 693695.Google Scholar
American Petroleum Institute (1949-1950) Reference clay minerals: A.P.I. Project 49, Prelim Rpts. 1-8, 698 pp.Google Scholar
Anderson, A. E., Jonas, E. C. and Odum, H. T. (1958) Alteration of clay minerals by digestive processes of marine organisms: Science, v. 127, no. 3291, pp. 190191.Google ScholarPubMed
Andreason, A. H. M. and Berg, S. (1935) Beispiele der Vervendung der pipette Methode bei der Feinheitanalyse unter besonderer Berücksichtigung der Feinheitsuntersuchungen von Mineralfarben: Angew. Chem., v. 20, pp. 283285.CrossRefGoogle Scholar
Arnold, H. D. (1911) Limitations imposed by slip and inertia terms for motion of spheres through liquids: Phil. Mag., v. 22, pp. 755775.CrossRefGoogle Scholar
Atterberg, A. (1905) Die rationelle Klassifikation der Sande und Kiese: Chem. Z., v. 29, pp. 195198.Google Scholar
Barshad, Isaac (1950) The effect of the interlayer cations on the expansion of the mica type of crystal lattice: Amer. Min., v. 35, pp. 225238.Google Scholar
Baver, L. D. (1948) Soil Physics: John Wiley, New York, 398 pp.Google Scholar
Berry, A. J. and Driver, J. E. (1939) Observations on the use of potassium Chromate as indicator for the titration of chlorides with silver nitrate: Analyst, v. 64, pp. 730734.CrossRefGoogle Scholar
Blackman, B. (1950) Shoaling processes in tidal water ways: Committee Tidal Hydraulics, Corps of Engineers, U.S. Army, Rpt. no. 1, pp. 111.Google Scholar
Bradley, W. F. and Grim, R. E. (1948) Colloid properties of layer lattices: J. Phys. Coll. Chem., v. 52, pp. 14041413.CrossRefGoogle Scholar
Bungenberg de Jong, H. G. and Kruyt, H. R. (1930) Koazervation (Entmischung in kolloiden Systemen): Kolloid Z., v. 50, pp. 3948.Google Scholar
Caillère, S., Héniri, S. and Mériaux, S. (1948) Transformation expérimentale d'une montmorillonite en une phyllite à 10 Å type illite: C.R. Acad. Sci., Paris, v. 226, pp. 680681.Google Scholar
Carroll, Dorothy (1958) Role of clay minerals in the transportation of iron: Geochim. Cosmochim. Acta, v. 14, pp. 128.CrossRefGoogle Scholar
Carroll, Dorothy and Starkey, H. C. (1959) The effect of sea water on clay minerals: This volume, pp. 80101.Google Scholar
Cheronis, N. D. (1954) Micro and Semi-micro Methods, Technique of Organic Chemistry, v. 6: Interscience Publishers, New York, 628 pp.Google Scholar
Coffman, P. M. (1946) Base exchange capacities of clays: M. A. Thesis, Stanford University.Google Scholar
Cohn, E. J. and Edsall, J. T. (1943) Proteins, Amino Acids and Peptides as Ions and Dipolar Ions: Amer. Chem. Soc. Monograph Series no. 90, Reinhold, New York, 686 pp.Google Scholar
Collier, A., Ray, S. and Magnitzsky, W. (1950) A preliminary note on naturally occurring organic substances in sea water affecting the feeding of oysters: Science, v. 111, pp. 151152. (See also Wangersky, P. J. (1952) Isolation of ascorbic acid and rhamnosides from sea water: Science, v. 114, p. 685.).CrossRefGoogle Scholar
Committee on Tidal Hydraulics (1950, 1954, 1955, 1957) Bibliography on Tidal Hydraulics: Corps of Engineers, U.S. Army, Rpts. 1, 2, Suppls. 1, 2, 146 pp., 208 pp., 78 pp., 84 pp.Google Scholar
Daniels, Farrington, Mathews, J. H. and Williams, J. W. (1941) Experimental Physical Chemistry (3rd Ed.); McGraw-Hill, New York, 460 pp.Google Scholar
Demolin, Albert and Barbier, G. (1929) Conditions de formation et constitution du complexe argilo-humique des sols: C.B. Acad. Sci., Paris, v. 188, pp. 654656.Google Scholar
Dietz, R. S. (1941) Clay minerals in Recent marine sediments: Ph.D. Thesis, University of Illinois, 68 pp.Google Scholar
Dische, Z. (1949) Spectrophotometric method for the determination of free pentose and pentose in nucleotides: J. Biol. Chem., v. 181, pp. 379392.CrossRefGoogle ScholarPubMed
Dittmar, W. (1884) Report on researches into the composition of ocean water, collected by H.M.S. Challenger: Challenger Reports, Phys. and Chem., v. 1, pp. 1251.Google Scholar
Dreveskracht, L. R. and Thiel, G. A. (1941) Ionic effects on the rate of settling of finegrained sediments: Amer. J. Sci., v. 239, pp. 689700.CrossRefGoogle Scholar
Einstein, A. (1906) Eine neue Bestimmung der Molekuldimensionen: Ann. Phys., ν. 19, pp. 289306.CrossRefGoogle Scholar
Einstein, A. (1911) Berichtigung zu meiner Arbeit: “Eine $$ Bestimmung der Molekuldimensionen”: Ann. Physik, v. 34, pp. 591592.CrossRefGoogle Scholar
Ensminger, L. E. and Geiseking, J. E. (1942) Resistance of clay-adsorbed proteins to protolytie hydrolysis: Soil Sci., v. 53, pp. 205209.CrossRefGoogle Scholar
Förch, C., Knudsen, M. and Sorënsen, S. P. L. (1902) Berichte über die Konstantenbestimmungen zur Aufstellung der hydrographischen Tabellen: Kgl. Danske Viden - skab. Selskab. Skrifter naturvidenskab. math. ser. 12, v. 1, p. 151.Google Scholar
Fox, D. L. (1950) Comparative metabolism of organic detritus by inshore animals: Ecology, v. 31, pp. 100108.CrossRefGoogle Scholar
Gessner, H. (1931) Die schämmananalyse: Leipzig.CrossRefGoogle Scholar
Gillam, W. S. (1949) The chemical nature of humic acid: Soil Sci., v. 49, pp. 430453.Google Scholar
Glass, H. D. (1958) Clay mineralogy of Pennsylvanian sediments in southern Illinois: in Clays and Clay Minerals, Natl. Acad. Sci—Natl. Research Council, pub. 566, pp. 227241.Google Scholar
Goldstein, S. (1929) The steady flow of viscous fluid past a fixed obstacle at small Reynolds’ numbers: Proc. Roy. Soc., v. 209, pp. 225235.Google Scholar
Gompertz, B. (1825) On the nature of the function expressive of human mortality, and on a new mode of determining the value of life contingencies: Phil. Trans., v. 115, pp. 513585.Google Scholar
Grim, R. E. (1953) Clay Mineralogy: McGraw-Hill, New York, 384 pp.Google Scholar
Grim, R. E., Allaway, W. H. and Cuthbert, F. L. (1947) Reaction of different clay minerals with some organic cations: J. Amer. Geram. Soc., v. 30, pp. 137142.Google Scholar
Grim, R. E., Dietz, R. S. and Bradley, W. F. (1949) Clay mineral composition of some sediments from the Pacific Ocean off the California coast and the Gulf of California: Bull. Geol. Soc. Amer., v. 60, pp. 17851808.CrossRefGoogle Scholar
Grim, R. E. and Johns, W. D. (1952) Clay mineral investigations. Study of near-shore Recent sediments and their environments in the northern Gulf of Mexico: Amer. Petroleum, Inst. Project 51, Progress Rpt. 5, 34 pp.Google Scholar
Grim, R. E. and Johns, W. D. (1954) Clay mineral investigations of sediments in the northern Gulf of Mexico: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 327, pp. 81103.Google Scholar
Gripenberg, S. (1934) A study of the sediments of the north Baltic and adjoining seas: Thalass. Inst. Mem. Fennia 60, no. 3, Helsingfors, 231 pp.Google Scholar
Groot, J. J. and Glass, H. D. (1959) Some aspects of the mineralogy of the Cretaceous sediments of New Jersey, Delaware, and Maryland: This volume.Google Scholar
Hansen, A. (1944) Studier over isolering af det antitoksinbaerende protein fra andere serumbestanddele: Munksgaard, Copenhagen, 162 pp.Google Scholar
Hardy, W. B. (1899) A preliminary investigation of the conditions that determine the instability of irreversible hydrosols: Proc. Roy. Soc., v. 66, pp. 110115.Google Scholar
Harned, H. S. and Owen, B. B. (1950) The Physical Chemistry of Electrolytic Solutions: Reinhold, New York, 645 pp.Google Scholar
Hartman, R. J. (1939) Colloid Chemistry: Houghton Mifflin Company, New York, 556 pp.Google Scholar
Hauser, E. A. (1950) Colloid Chemistry (Edited by Alexander, J.), ch. 7, pp. 432441: Reinhold, New York.Google Scholar
Hauser, E. A. (1951) Modern colloidchemical concepts of the phenomenon of coagulation: J. Phys. Coll. Chem., v. 55, pp. 605611.CrossRefGoogle Scholar
Hauser, E. A. (1955) The colloid science of important clay minerals: in Clays and Clay Minerals, Natl. Acad. Sci.—-Natl. Research Council, pubi. 395, pp. 442472.Google Scholar
Hauser, E. A. and leBeau, D. S. (1938) Studies on gelation and film formation of colloidal clays: J. Phys. Chem., v. 42, pp. 9611031.CrossRefGoogle Scholar
Hauser, E. A., leBeau, D. S. and Pevear, P. P. (1951) The surface structure and composition of colloidal siliceous matter: J. Phys. Coll. Chem., v. 55, pp. 6879.CrossRefGoogle ScholarPubMed
Hendricks, S. B. (1941) Base-exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces: J. Phys. Chem., v. 45, pp. 6581.CrossRefGoogle Scholar
Hillebrand, W. F., Lundell, G. E. F., Bright, H. A. and Hoffman, J. I. (1953) Applied Inorganic Analysis (2nd Ed.): John Wiley, New York, 1034 pp.Google Scholar
Hood, O. W. and Jeffrey, L. M. (1953) Organic Content of Sea Water: Ann. Meet. Amer. Soc. Limnol. and Oceanog. In press.Google Scholar
Huggins, M. L. (1939) The viscosity of dilute solutions of long-chain molecules, I, The Staudinger viscosity law: J. Appl. Phys., v. 20, pp. 700704.CrossRefGoogle Scholar
Jackson, M. L. (1939) Ph.D. Thesis, University Wisconsin. (See also McBain, J. W. (1950) Colloid Science, pp. 382385: Heath, Boston,).Google Scholar
Jordan, J. W. (1949) Organophilic bentonites. I. Swelling in organic liquids: J. Phys. Coll. Chem., v. 53, pp. 294306.Google Scholar
Kahn, Allan and Lewis, D. R. (1954) The size of sodium montmorillonite particles in suspension from electro-optical birefringence studies: J. Phys. Chem., v. 58, pp. 801804.CrossRefGoogle Scholar
Keen, B. A. (1931) The Physical Properties of the Soil: Longmans, London, 380 pp.Google Scholar
Keller, W. D. (1958) Glauconitic mica in the Morrison formation in Colorado: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 566, pp. 120128.Google Scholar
Keller, W. D. (1959) Clay minerals in the Morrison formation of the Colorado plateau. This volume.CrossRefGoogle Scholar
Kelley, W. J. (1924) Determination of distribution of particle size: J. Industr. Engng. Chem., v. 16, pp. 928930.CrossRefGoogle Scholar
Knudsen, M. (1901) Hydrographie Tables: G.E.C. Gad, Copenhagen, 63 pp.Google Scholar
Köhn, M. (1928) Beiträge zur Theorie und Praxis der mechanischen Bodenanaiyse: Landwirtsch. Jahrb., v. 67, pp. 485546.Google Scholar
Krumbein, W. C. (1934) Size frequency distributions of sediments: J. Sed. Petrol., v. 4, pp. 6577.CrossRefGoogle Scholar
Krumbein, W. C. (1937) Korngrösseneinteilungen und statistische Analyse: Neues Jahrb. Mineral, v. 73, pp. 137150.Google Scholar
Krumbein, W. C. and Pettijohn, F. J. (1938) Manual of Sedimentary Petrography: Appleton-Century, New York, 549 pp.Google Scholar
Kuenen, Ph. H. (1950) Marine Geology: John Wiley, New York, 568 pp.Google Scholar
Kruyt, H. R. (1952) Colloid Science, v. 1 and 2, p. vi: Elsevier, New York.Google Scholar
Landenburg, R. (1907) Über den Einfluss von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit: Ann. Phys., v. 23, pp. 447458.CrossRefGoogle Scholar
Landes, K. K. (1951) Petroleum Geology: John Wiley, New York, 660 pp.Google Scholar
Lewis, D. R. (1950) Base-exchange data: Amer. Petroleum Inst. Proj. 49, Prelim. Rpt. 7, Sect. 3, pp. 91124.Google Scholar
Lyman, J. and Fleming, R. H. (1940) Composition of sea water: J. Mar. Res., v. 3, pp. 134136.Google Scholar
MacEwan, D. M. C. (1948) Complexes of clays with organic compounds. I: Trans. Faraday Soc., v. 44, pp. 349367.CrossRefGoogle Scholar
Marshall, C. E. (1949) The Colloid Chemistry of the Silicate Minerals: Academic Press. New York, 195 pp.Google Scholar
Marshall, C. E. (1956) Thermodynamic, quasithermodynamic and nonthermodynamic methods as applied to the electrochemistry of clays: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 456, pp. 288300.Google Scholar
Martin, R. T. (1954) Reference chlorite characterization for chlorite identification in soil clays: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 395, pp. 117145.Google Scholar
McBain, J. W. (1950) Colloid Science: Heath, Boston, 450 pp.Google Scholar
McClendon, J. F., Gault, C. C. and Mulholland, S. (1907) The hydrogen-ion concentration CO2-tension, and CO2-eontent of sea water: Carnegie Inst. Wash., pub. 251, papers from Dept. Marine Biol., pp. 21-69.Google Scholar
Millot, Georges (1949) Relations entre la constitution et la genèse des roches sédimentaires argileuses: Géol. appl, et prospect, minière., v. 2, 352 pp.Google Scholar
Mohr, C. F. (1856) Neue mafsanalytische Bestimmung des Chlors in Verbindungen: Ann. Chem., Liebigs, v. 97, (3), pp. 335338.CrossRefGoogle Scholar
Myers, E. E. (1937) Physico-chemical reactions between organic and inorganic soil colloids as related to aggregate formation: Soil Sci., v. 44, pp. 331359.CrossRefGoogle Scholar
Nelson, B. W. (1959) Clay mineral assemblages from the Rappahannock River: in Program and Abstracts, Seventh National Clay Conference, Washington, D.C. (Abstract).Google Scholar
Nikkilä, E. and Oker-Blom, N. (1952) Absorption of serum lipids by montmorillonite: Science, v. 116, pp. 685687.CrossRefGoogle Scholar
Nomitzu, T. and Takegami, T. (1937) Studies on marine deposits. 1. On the action of sea salts upon the sedimentation of fine mud: Records Oceanogr. Works Japan, v. 9, no. 1, pp. 125.Google Scholar
Oakes, D. T. and Bureik, E. J. (1956) Electrokinetic phenomena in colloidal clays: in Clays and Clay Minerals, Natl. Acad. Sci—Natl. Research Council, pub. 456, pp. 225239.Google Scholar
Oden, Sven (1915) Eine neue Methode zur mechanischen Bodenanalyse: Internat. Mitt. Bedenk., v. 6, pp. 257311.Google Scholar
Oseen, C. W. (1910) Über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik: Ark. Mat., Astron. Fys., v. 6, no. 29, pp. 120. (See also Oseen, C. W. (1911, 1913) Ibid: v. 7, no. 1, pp. 1-36; v. 9, no. 15, pp. 1-15.).Google Scholar
Overbeek, J. Th. G. (1953) Donnan EMF and suspension effect: J. Coll. Sci., v. 8, pp. 593605.CrossRefGoogle Scholar
Page, J. B. and Baver, L. D. (1939) Ionic size in relation to fixation of cations by colloidal clay: Soil Sci. Soc. Amer., Proc., v. 4, pp. 150155.CrossRefGoogle Scholar
Pinck, L. A. and Allison, F. E. (1951) Resistance of a protein-montmorillonite complex to decomposition by soil micro-organisms: Science, v. 114, pp. 130131.Google Scholar
Powers, M. C. (1954) Clay diagenesis in the Chesapeake Bay area: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 327, pp. 6880.Google Scholar
Rankama, Kalervo and Sahama, Th. G. (1950) Geochemistry: The University of Chicago Press, Chicago, Illinois, 912 pp.Google Scholar
Rayleigh, Lord (1899) On the transmission of light through an atmosphere containing small particles, and on the origin of the blue of the sky: Phil. Mag., v. 47, pp. 375384.CrossRefGoogle Scholar
Revelle, Roger and Shepard, F. P. (1939) Sediments off the California coast: in Recent Marine Sediments. A symposium, pp. 245282, Amer. Assoc. Petrol. Geol., Murby, London.Google Scholar
Reynolds, O. (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels: Phil. Trans., v. 174, pp. 935982.Google Scholar
Rivière, André (1953) Sur l'origine des argiles sédimentaires: Congrès Géologique Internat. 1952, fascicule 18, pp. 177180.Google Scholar
Robertson, R. H. S. and Ward, R. M. (1951) The assay of pharmaceutical clays: J. Pharm. Pharmacol., v. 3, pp. 2735.Google ScholarPubMed
Rona, P. and Kleinman, H. (1923) Eine Methode zur nephelometrischen Bestimmung kleinster Einweissmengen: Biochem. Z., v. 140, pp. 461477.Google Scholar
Rubey, W. W. (1930) Lithologie studies of fine-grained Upper Cretaceous sedimentary rocks of the Black Hills region: U.S. Geol. Survey, Prof. Paper 165-A, 54 pp.CrossRefGoogle Scholar
Rubey, W. W. (1933) Settling velocity of gravel, sand, and silt particles: Amer. J. Sci., v. 25, pp. 325338.CrossRefGoogle Scholar
Simmons, H. B. (1950) Applicability of hydraulic model studies to tidal problems: in Evaluation of Present State of Knowledge of Factors affecting Tidal Hydraulics and Related Phenomena, Committee on Tidal Hydraulics, Corps of Engineers, U.S. Army, Rpt. 1, pp. 127146.Google Scholar
Stevenson, F. J., Marks, J. D., Yarner, J. B. and Martin, W. P. (1952) Electrophoretic and chromatographic investigations of clay-adsorbed organic colloids: Soil Sci. Soc. Amer., Proc., v. 16, pp. 6973.CrossRefGoogle Scholar
Stokes, G. G. (1851) On the effect of the internal friction of fluids on the motion of pendulums: Trans. Cambridge Phil. Soc., v. 9, pt. 2, pp. 8106.Google Scholar
Sverdrup, H. U., Johnson, M. W. and Fleming, R. H. (1942) The Oceans, Their Physics, Chemistry, and General Biology: Prentice-Hall, New York, 1087 pp.Google Scholar
Thomas, A. W. (1934) Colloid Chemistry: McGraw-Hill, New York, 512 pp.Google Scholar
Udden, J. A. (1914) Mechanical composition of clastic sediments: Bull. Geol. Soc. Amer., v. 25, pp. 655744.CrossRefGoogle Scholar
Van Andel, Tj. and Postma, H. (1954) Recent Sediments in Gulf of Paria, v. 1: North Holland Publishing Company, Amsterdam, 143 pp.Google Scholar
van Olphen, H. (1956) Forces between suspended bentonite particles: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 456, pp. 204224.Google Scholar
Verwey, E. J. W. and Overbeek, J. Th. G. (1948) Theory of the Stability of Lyophobic Colloids: Elsevier, New York, 205 pp.Google Scholar
Volk, G. (1938) Nature of potash fixation in soils: Soil Sci., v. 45, pp. 263276.CrossRefGoogle Scholar
Wadell, H. (1936) Some practical sedimentation formulas: Geol. Fören, i Stockholm Förh., v. 58, pp. 297408.Google Scholar
Walker, G. F. (1950) Vermiculite-organic complexes: Nature, Lond., v. 166, pp. 695697.CrossRefGoogle Scholar
Weaver, C. E. (1958) A discussion on the origin of clay minerals in sedimentary rocks: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, publ. 566, pp. 159173.Google Scholar
Wentworth, C. K. (1922) A scale of grade and class terms for clastic sediments: J. Geol., v. 30, pp. 377392.CrossRefGoogle Scholar
Weyssenhoff, J. (1920) Betrachtungen über den Gültigkeitsbereich der Stokes'schen und der Stokes-Cunninghamschen Formel: Ann. Phys., v. 62, pp. 145.CrossRefGoogle Scholar
Whitehouse, U. G. (1955) A preliminary consideration of selected chemical and océanographic factors influential in the formation of the alumino-silicate fraction of some Recent sediments: Dissertation, A. and M. College of Texas, 197 pp.Google Scholar
Whitehouse, U. G. and Jeffrey, L. M. (1951-52) Chemistry of marine sedimentation. Study of nearshore Recent sediments and their environments in the northern Gulf of Mexico: Amer. Petrol. Inst. Proj. 51, Progress Rpts. 5, 6, 7; Texas A. and M. Research Found. Proj. 34A, Progress Rpts., July, Dec., 89 pp.Google Scholar
Whitehouse, U. G. and Jeffrey, L. M. (1953) Differential settling velocities of kaolinitic, montmorillonitic, and illitic clays in saline water. Chemistry of marine sedimentation: Texas A. and M. Research Found. Proj. 34A, Tech. Rpt. no. 1, 31 pp.Google Scholar
Whitehouse, U. G. and Jeffrey, L. M. (1953a) Relative adsorption tendencies of settling clays for selected organic materials: Texas A. and M. Research Found. Proj. 34A, Tech. Rpt. no. 3, 17 pp.Google Scholar
Whitehouse, U. G. and Jeffrey, L. M. (1954) Flocculation in estuaries: Symposium on Tidal Hydraulics (New York), Comm. Tidal Hydraulics, Corps of Engineers, U.S. Army, 39 pp.Google Scholar
Whitehouse, U. G. and Jeffrey, L. M. (1955) Peptization resistance of selected samples of kaolinitic, montmorillonitic, and illitic clay materials: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 395, pp. 260281.Google Scholar
Whitehouse, U. G. and McCarter, R. S. (1958) Diagenetic modification of clay minerals in artificial sea water: in Clays and Clay Minerals, Natl. Acad. Sci.—Natl. Research Council, pub. 566, pp. 81119.Google Scholar
Wiegner, G. (1925) Dispersität und Baseaustausch (Ionenaustausch); Kolloid Z., v. 36, pp. 341369.CrossRefGoogle Scholar
ZoBell, C. E. (1946) Marine Microbiology: Monograph on Hydrobacteriology: Chronica Botanica Company, Waltham, Mass., 240 pp.Google Scholar