Published online by Cambridge University Press: 01 January 2024
The Konya region in central Anatolia is covered by Pliocene-Late Pleistocene sediments and volcanites related to the sediments NNW of Karapınar, Turkey. In the area, the Upper Miocene-Quaternary Üzecek Dağı and Karacadağ volcanites are generally of the same age and formed from magmas of similar composition. The Karapınar formation is brown to whitish-beige, partly fossiliferous and consists of limestone, marl, claystone and, locally, sandy layers. Silica-rich lenses, nodules and layers are observed in the upper strata which locally contain sepiolite-rich layers. The mineralogical composition of sepiolite samples taken from the area was determined by powder X-ray diffractometry, while the abundance of major-element oxides was measured by X-ray fluorescence spectrometry. The crystallographic and morphological properties of samples were determined by means of scanning electron microscopy and energy dispersive spectroscopy. Samples were taken from three sections and from random locations. Mineral assemblages in the same stratigraphic position are generally similar in the three sections, while the thickness of the individual beds varies between the sections. Dolomite and calcite are the main carbonate minerals in the sections. Sepiolite occurs primarily with dolomite and, locally, dolomite and calcite, and less commonly with just calcite. Generally, quartz, feldspar and mica are found, especially in the upper parts of the sections where tuff is abundant. CaO and MgO dominate the major-element oxides. The CaO content is between 1 and 30% while MgO is 3–21%. Al2O3 and SiO2 are generally higher in the sepiolitic and tuffitic layers. Al2O3 is <3% and SiO2 is between 15–18% in the sepiolitic layers. The average structural formula of sepiolite was calculated as: (Mg7.00Al0.44Fe0.18)(Si11.71Al0.29)O30 (OH)4(OH2)4Ca0.13K0.09Na0.01. Sepiolite occurs as fibers and dolomite as subhedral or euhedral crystals. It is considered that sepiolite was formed either by conversion of dolomite or by direct precipitation from solution under alkaline and saline conditions in the Karapınar paleolake. The paleolake was saturated with respect to Mg, Ca and Si derived from groundwater that percolated along fracture systems.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.