Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-31T22:05:46.131Z Has data issue: false hasContentIssue false

Aflatoxin Adsorption by Natural and Heated Sepiolite and Palygorskite in Comparison with Adsorption by Smectite

Published online by Cambridge University Press:  01 January 2024

Saba Akbar
Affiliation:
Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77845, USA
Mohammad Saleem Akhtar
Affiliation:
Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
Ahmad Khan*
Affiliation:
Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77845, USA
Ghulam Jilani
Affiliation:
Institute of Soil & Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
Bidemi Fashina
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77845, USA
Youjun Deng
Affiliation:
Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77845, USA

Abstract

Smectites are effective binders of aflatoxin in aqueous solutions. Unfortunately, their efficacy is reduced in guts because of interference by biomolecules and essential nutrients within the gut. Tunnel structures in palygorskite and sepiolite may function as molecular sieves and may, therefore, serve as alternatives or complements to smectites in binding aflatoxins but not larger biological compounds. The objective of the current work was to determine the effect of heat treatment on aflatoxin B1 (AfB1) adsorption and selectivity for biomolecules by two palygorskites (Plg_PK and Plg_CN), sepiolite (Sep), and a palygorskite-smectite mixture (Plg-Sm) in comparison with a smectite (Sm-37GR). The clays were heated at 250, 400, 500, and 600°C while phase and structural changes were characterized by X-ray diffraction and infrared spectroscopy. Comparative AfB1 adsorption was determined in aqueous and in simulated gastric fluids. The clay structures collapsed irreversibly in Sm-37GR and folded in fibrous clays with heating at 400°C or more. Sm-37GR adsorbed more AfB1 than all of the other clays; the estimated adsorption capacity followed the trend Sm-37GR (44 g kg–1) > Plg_PK (18.12 g kg–1) > Sep (12.7 g kg–1) > Plg_CN (11.4 g kg–1) > Plg-Sm (9.0 g kg–1). This trend appeared to be correlated with the abundance of smectite in the clays. Sepiolite had greater binding strength for AfB1 than the other clays. With intact clay structures, heating induced a negligible effect on AfB1 adsorption by the fibrous clays while in Sm-37GR and Plg-Sm, adsorption increased with heating at 250°C. Tunnel folding and structural collapse that had occurred at 400°C caused an abrupt decline in AfB1 adsorption irrespective of the clay type. The sepiolite clay adsorbed the least pepsin (370 g kg–1) while smectite adsorbed the most (1430 g kg–1). Consequently, in the simulated gastric fluid, adsorption declined by 25–30% in sepiolite, 52–60% in smectite, and remained unaffected in the palygorskites. Aflatoxin B1 adsorption probably occurred through H-bonding at the surface with the silanol group in palygorskite and sepiolite. No evidence that AfB1 molecules occupied the tunnels of the natural or heated palygorskite or sepiolite was observed in the present study. Palygorskite and sepiolite had a much smaller adsorption capacity for AfB1 than the smectite but also adsorbed less pepsin; therefore, both may be effective aflatoxin binders in gastrointestinal systems.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Asssociate Editor: Reiner Dohrmann

References

Al-Futaisi, A., Jamrah, A., Al-Rawas, A., & Al-Hanai, S. (2007). Adsorption capacity and mineralogical and physico-chemical characteristics of Shuwaymiyah palygorskite (Oman). Environmental Geology, 151(8), 13171327. https://doi.org/10.1007/s00254-006-0430-yCrossRefGoogle Scholar
Alabarse, F. G., Conceição, R. V., Balzaretti, N. M., Schenato, F., & Xavier, A. M. (2011). In-situ FTIR analyses of bentonite under high-pressure. Applied Clay Science, 51(1–2), 202208. https://doi.org/10.1016/j.clay.2010.11.017CrossRefGoogle Scholar
Alam, S. S., & Deng, Y. (2017). Protein interference on aflatoxin B1 adsorption by smectites in corn fermentation solution. Applied Clay Science, 144, 3644. https://doi.org/10.1016/j.clay.2017.04.024CrossRefGoogle Scholar
Alkaram, U. F., Mukhlis, A. A., & Al-Dujaili, A. H. (2009). The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. Journal of Hazardous Materials, 169(1–3), 324332. https://doi.org/10.1016/j.jhazmat.2009.03.153CrossRefGoogle ScholarPubMed
Balci, S. (1999). Effect of heating and acid pre-treatment on pore size distribution of sepiolite. Clay Minerals, 34(4), 647655. https://doi.org/10.1180/000985599546406CrossRefGoogle Scholar
Barrientos-Velázquez, A. L., & Deng, Y. (2020). Reducing competition of pepsin in aflatoxin adsorption by modifying a smectite with organic nutrients. Toxins, 12(1), 28. https://doi.org/10.3390/toxins12010028CrossRefGoogle ScholarPubMed
Barrientos-Velázquez, A. L., Arteaga, S., Dixon, J. B., & Deng, Y. (2016). The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Applied Clay Science, 120, 1723. https://doi.org/10.1016/j.clay.2015.11.014CrossRefGoogle Scholar
Bertagnolli, C., Kleinübing, S. J., & Da Silva, M. G. C. (2011). Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds. Applied Clay Science, 53(1), 7379. https://doi.org/10.1016/j.clay.2011.05.002CrossRefGoogle Scholar
Busby, W., & Wogan, G. (1984). Chemical Carcinogens. In ACS Monograph (Vol. 2, pp 945). American Chemical Society.Google Scholar
Caglar, B., Afsin, B., & Tabak, A., & Eren, E. (2009). Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement. Chemical Engineering Journal, 149(1–3), 242248. https://doi.org/10.1016/j.cej.2008.10.028CrossRefGoogle Scholar
Chisholm, J. E. (1992). Powder-diffraction patterns and structural models for palygorskite. The Canadian Mineralogist, 30(1), 6173. https://doi.org/10.1016/j.cej.2008.10.028Google Scholar
Chorom, M., & Rengasamy, P. (1996). Effect of heating on swelling and dispersion of different cationic forms of a smectite. Clays and Clay Minerals, 44(6), 783790. https://doi.org/10.1346/ccmn.1996.0440609CrossRefGoogle Scholar
Dekany, I., Turi, L., Fonseca, A., & Nagy, J. B. (1999). The structure of acid treated sepiolites: Small-angle X-ray scattering and multi MAS-NMR investigations. Applied Clay Science, 14(1–3), 141160. https://doi.org/10.1016/s0169-1317(98)00056-8CrossRefGoogle Scholar
Deng, Y., & Szczerba, M. (2011). Computational evaluation of bonding between aflatoxin B1 and smectite. Applied Clay Science, 54(1), 2633. https://doi.org/10.1016/j.clay.2011.07.007CrossRefGoogle Scholar
Deng, Y., Barrientos-Velázquez, A. L., Billes, F., & Dixon, J. B. (2010). Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50(1), 9298. https://doi.org/10.1016/j.clay.2010.07.008CrossRefGoogle Scholar
Deng, Y., Liu, L., Barrientos-Velázquez, A. L., & Dixon, J. B. (2012). The determinative role of the exchange cation and layer-charge density of smectite on aflatoxin adsorption. Clays and Clay Minerals, 60(4), 374386. https://doi.org/10.1346/ccmn.2012.0600404CrossRefGoogle Scholar
Diaz, D. E., Hagler, W. M., Hopkins, B. A., & Whitlow, L. M. (2002). Aflatoxin binders I: In vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia, 156(3), 223226. https://doi.org/10.1023/A:1023388321713CrossRefGoogle ScholarPubMed
Dupuis, T., Ducloux, J., Butel, P., & Nahon, D. (1984). Etude par spectrographie Infrarouge d'un encroutement calcaire sous galet. Mise en évidence et modélisation expérimentale d'une suite minérale évolutive à partir de carbonate de calcium amorphe. Clay Minerals, 19(4), 605614. https://doi.org/10.1180/claymin.1984.019.4.07CrossRefGoogle Scholar
Eren, E., & Afsin, B. (2008). An investigation of Cu (II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 151(2–3), 682691. https://doi.org/10.1016/j.jhazmat.2007.06.040CrossRefGoogle ScholarPubMed
Frost, R., & Ding, Z. (2003). Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397(1–2), 119128. https://doi.org/10.1016/S0040-6031(02)00228-9CrossRefGoogle Scholar
Frost, R. L., Cash, G. A., & Kloprogge, J. T. (1998). Rocky mountain leather' sepiolite and attapulgite - an infrared emission spectroscopic study. Vibrational Spectroscopy, 16(2), 173184. https://doi.org/10.1016/S0924-2031(98)00014-9CrossRefGoogle Scholar
Frost, R. L., Locos, O. B., Ruan, H., & Kloprogge, J. T. (2001). Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27(1), 113. https://doi.org/10.1016/S0924-2031(01)00110-2CrossRefGoogle Scholar
Galán, E. (1996). Properties and applications of palygorskitesepiolite clays. Clay Minerals, 31(4), 443453. https://doi.org/10.1180/claymin.1996.031.4.01CrossRefGoogle Scholar
Gan, F., Hang, X., Huang, Q., & Deng, Y. (2019). Assessing and modifying China bentonites for aflatoxin adsorption. Applied Clay Science, 168, 348354. https://doi.org/10.1016/j.clay.2018.12.001CrossRefGoogle Scholar
Girish, C., & Smith, T. (2008). Impact of feed-borne mycotoxins on avian cell-mediated and humoral immune responses. World Mycotoxin Journal, 1(2), 105121. https://doi.org/10.3920/WMJ2008.1015CrossRefGoogle Scholar
Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M. R., & Gobetto, R. (2011). Host/guest interactions in a sepiolite-based Maya blue pigment: A spectroscopic study. The Journal of Physical Chemistry, 115(34), 1676416776. https://doi.org/10.1021/jp203270cGoogle Scholar
González-Pradas, E., Socías-Viciana, M., Urena-Amate, M., Cantos-Molina, A., & Villafranca-Sánchez, M. (2005). Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites. Water Research, 39(9), 18491857. https://doi.org/10.1016/j.watres.2005.03.001CrossRefGoogle ScholarPubMed
Grant, P. G., & Phillips, T. D. (1998). Isothermal adsorption of aflatoxin B1 on HSCAS clay. Journal of Agricultural and Food Chemistry, 46(2), 599605. https://doi.org/10.1021/jf970604vCrossRefGoogle ScholarPubMed
Harris, D., Bonagamba, T., & Schmidt-Rohr, K. (1999). Conformation of poly (ethylene oxide) intercalated in clay and MoS2 studied by two-dimensional double-quantum NMR. Macromolecules, 32(20), 67186724. https://doi.org/10.1021/ma9907800CrossRefGoogle Scholar
Hayashi, H., Otsuka, R., & Imai, N. (1969). Infrared study of sepiolite and palygorskite on heating. American Mineralogist, 54(11–12), 16131624.Google Scholar
Heller-Kallai, L. (2013). Thermally modified clay minerals (Vol. 5, pp. 411433). Elsevier, Amsterdam: In Developments in Clay Science. https://doi.org/10.1016/B978-0-08-098258-8.00014-6Google Scholar
Hojati, S., & Khademi, H. (2013). Thermal behavior of a natural sepiolite from Northeastern Iran. Journal of Sciences, Islamic Republic of Iran, 24(2), 129134.Google Scholar
Holtzer, M., Bobrowski, A., & Żymankowska-Kumon, S. (2011). Temperature influence on structural changes of foundry bentonites. Journal of Molecular Structure, 1004(1–3), 102108. https://doi.org/10.1016/j.molstruc.2011.07.040CrossRefGoogle Scholar
IARC, International Agency for Research on Cancer (2002). IARC Monograph on the evaluation of carcinogenic risk of chemicals to humans, some traditional herbal medicines, some mycotoxins, naphthalene and styrene. The International Agency for Research on Cancer, 82. https://scirp.org/reference/referencespapers.aspx?referenceid=3202055Google Scholar
Jackson, M. L. (1979). Soil Chemical Analysis Advanced Course (M. L. Jackson Ed, 2nd ed). USA: Madison WI.Google Scholar
Jaynes, W., Zartman, R., & Hudnall, W. (2007). Aflatoxin B1 adsorption by clays from water and corn meal. Applied Clay Science, 36(1–3), 197205. https://doi.org/10.1016/j.clay.2006.06.012CrossRefGoogle Scholar
Jaynes, W. F., & Zartman, R. E. (2011). Influence of soluble feed proteins and clay additive charge density on aflatoxin binding in ingested feeds (Guevara-González, R. G., editor) pp. 124 in: Aflatoxins—Biochemistry Molecular Biology. IntechOpen. https://doi.org/10.5772/24064Google Scholar
Kang, F., Ge, Y., Hu, X., Goikavi, C., Waigi, M. G., Gao, Y., & Ling, W. (2016). Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study. Journal of Hazardous Materials, 320, 8087. https://doi.org/10.1016/j.jhazmat.2016.08.006CrossRefGoogle Scholar
Kannewischer, I., Arvide, M. G. T., White, G. N., & Dixon, J. B. (2006). Smectite clays as adsorbents of aflatoxin B1: Initial steps. Clay Science, 12, 199204. https://doi.org/10.11362/jcssjclayscience1960.12.Supplement2_199Google Scholar
Khan, A., Akhtar, M. S., Akbar, S., Khan, K. S., Iqbal, M., Barrientos-Velázquez, A., & Deng, Y. (2022). Effects of Metal-polycation pillaring and exchangeable cations on aflatoxin adsorption by smectite. Clays and Clay Minerals, 70(2), 155164. https://doi.org/10.1007/s42860-021-00159-0CrossRefGoogle Scholar
Korichi, S., Elias, A., & Mefti, A. (2009). Characterization of smectite after acid activation with microwave irradiation. Applied Clay Science, 42(3–4), 432438. https://doi.org/10.1016/j.clay.2008.04.014CrossRefGoogle Scholar
Kuang, S.-M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E., & Walton, R. A. (2002). Synthesis and structural characterization of Cu (I) and Ni (II) complexes that contain the Bis [2-(diphenylphosphino) phenyl] ether ligand. Novel emission properties for the Cu (I) species. Inorganic Chemistry, 41(12), 33133322. https://doi.org/10.1021/ic0201809CrossRefGoogle Scholar
Kuang, W., Facey, G. A., & Detellier, C. (2004). Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clays and Clay Minerals, 52(5), 635642. https://doi.org/10.1346/CCMN.2004.0520509CrossRefGoogle Scholar
Lemke, S., Ottinger, S., Mayura, K., Ake, C., Pimpukdee, K., Wang, N., & Phillips, T. (2001). Development of a multi-tiered approach to the in vitro prescreening of clay-based enterosorbents. Animal Feed Science and Technology, 93(1–2), 1729. https://doi.org/10.1016/S0377-8401(01)00272-3CrossRefGoogle Scholar
Li, Y., Tian, G., Gong, L., Chen, B., Kong, L., & Liang, J. (2020). Evaluation of natural sepiolite clay as adsorbents for aflatoxin B1: A comparative study. Journal of Environmental Chemical Engineering, 8(4), 104052. https://doi.org/10.1016/j.jece.2020.104052CrossRefGoogle Scholar
Madejová, J. (2003). FTIR technique in clay mineral studies. Vibrational Spectroscopy, 31(1), 110. https://doi.org/10.1016/S0924-2031(02)00065-6CrossRefGoogle Scholar
Madejová, J., Pálková, H., & Komadel, P. (2006). Behaviour of Li+ and Cu2+ in heated montmorillonite: Evidence from far-, mid-, and near-IR regions. Vibrational Spectroscopy, 40(1), 8088. https://doi.org/10.1016/j.vibspec.2005.07.004CrossRefGoogle Scholar
Mora, M., López, M. I., Carmona, M. Á., Jiménez-Sanchidrián, C., & Ruiz, J. R. (2010). Study of the thermal decomposition of a sepiolite by mid-and near-infrared spectroscopies. Polyhedron, 29(16), 30463051. https://doi.org/10.1016/j.poly.2010.08.009CrossRefGoogle Scholar
Mulder, I., Velazquez, A. L. B., Arvide, M. G. T., White, G. N., & Dixon, J. B. (2008). Smectite clay sequestration of aflatoxin B1: Particle size and morphology. Clays and Clay Minerals, 56(5), 559571. https://doi.org/10.1346/ccmn.2008.0560509CrossRefGoogle Scholar
Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Applied Clay Science, 17(5–6), 207221. https://doi.org/10.1016/S0169-1317(00)00016-8CrossRefGoogle Scholar
Nones, J., Nones, J., Poli, A., Trentin, A. G., Riella, H. G., & Kuhnen, N. C. (2016). Organophilic treatments of bentonite increase the adsorption of aflatoxin B1 and protect stem cells against cellular damage. Colloids and Surfaces b: Biointerfaces, 145, 555561. https://doi.org/10.1016/j.colsurfb.2016.05.061CrossRefGoogle ScholarPubMed
Nones, J., Riella, H. G., Trentin, A. G., & Nones, J. (2015). Effects of bentonite on different cell types: A brief review. Applied Clay Science, 105, 225230. https://doi.org/10.1016/j.clay.2014.12.036CrossRefGoogle Scholar
Noyan, H., Önal, M., & Sarιkaya, Y. (2007). The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chemistry, 105(1), 156163. https://doi.org/10.1016/j.foodchem.2007.03.060CrossRefGoogle Scholar
Padilla-Ortega, E., Medellín-Castillo, N., & Robledo-Cabrera, A. (2020). Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II). Journal of Environmental Chemical Engineering, 8(4), 103850. https://doi.org/10.1016/j.jece.2020.103850CrossRefGoogle Scholar
Perraki, T., & Orfanoudaki, A. (2008). Study of raw and thermally treated sepiolite from the Mantoudi area, Euboea, Greece. Journal of Thermal Analysis and Calorimetry, 91(2), 589593. https://doi.org/10.1007/s10973-007-8329-8CrossRefGoogle Scholar
Phillips, T., Lemke, S., & Grant, P. (2002). Characterization of clay based enterosorbents for the prevention of aflatoxicosis. In Mycotoxins and Food Safety: Advances In Experimental Medicine and Biology (Vol. 504, pp. 157171). New York: Kluwar Academic/Plenum Publishers. https://doi.org/10.1007/978-1-4615-0629-4_16CrossRefGoogle Scholar
Post, J. E., Bish, D. L., & Heaney, P. J. (2007). Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 9197. https://doi.org/10.2138/am.2007.2134CrossRefGoogle Scholar
Preisinger, A. (1963). Sepiolite and related compounds: Its stability and application. Clays and Clay Minerals, 10, 365371. https://doi.org/10.1346/ccmn.1961.0100132CrossRefGoogle Scholar
Ramos, A. J., & Hernandez, E. (1996). In vitro aflatoxin adsorption by means of a montmorillonite silicate. A study of adsorption isotherms. Animal Feed Science and Technology, 62(2–4), 263269. https://doi.org/10.1016/S0377-8401(96)00968-6CrossRefGoogle Scholar
Rausell-Colom, J., & Serratosa, J. (1987). Chapter 8 in Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). London: Monograph 6, Mineralogical Society. https://doi.org/10.1180/claymin.1987.022.4.12Google Scholar
Ruiz-Hitzky, E. (2001). Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 11(1), 8691. https://doi.org/10.1039/B003197FCrossRefGoogle Scholar
Sabah, E., Turan, M., & Celik, M. (2002). Adsorption mechanism of cationic surfactants onto acid-and heat-activated sepiolites. Water Research, 36(16), 39573964. https://doi.org/10.1016/S0043-1354(02)00110-0CrossRefGoogle ScholarPubMed
Serna, C., Ahlrichs, J., & Serratosa, J. (1975). Folding in sepiolite crystals. Clays and Clay Minerals, 23(6), 452457. https://doi.org/10.1346/CCMN.1975.0230607CrossRefGoogle Scholar
Suarez, M., & Garcia-Romero, E. (2006). FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Applied Clay Science, 31(1–2), 154163. https://doi.org/10.1016/j.clay.2005.10.005CrossRefGoogle Scholar
Tekbaş, M., Bektaş, N., & Yatmaz, H. C. (2009). Adsorption studies of aqueous basic dye solutions using sepiolite. Desalination, 249(1), 205211. https://doi.org/10.1016/j.desal.2008.10.028CrossRefGoogle Scholar
Wang, W., Wang, F., Kang, Y., & Wang, A. (2015). Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite. Water, Air and Soil Pollution, 226(3), 113. https://doi.org/10.1007/s11270-015-2355-0CrossRefGoogle Scholar
Wang, G., Wang, S., Sun, Z., Zheng, S., & Xi, Y. (2017). Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye. Applied Clay Science, 148, 110. https://doi.org/10.1016/j.clay.2017.08.001CrossRefGoogle Scholar
Weir, M., Facey, G., & Detellier, C. (2000). 1H, 2H and 29Si solid state NMR study of guest acetone molecules occupying the zeolitic channels of partially dehydrated sepiolite clay In Studies in Surface Science and Catalysis (Vol. 129, pp. 551558). Amsterdam: Elsevier. https://doi.org/10.1016/S0167-2991(00)80257-8Google Scholar
Yan, W., Liu, D., Tan, D., Yuan, P., & Chen, M. (2012). FTIR spectroscopy study of the structure changes of palygorskite under heating. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 97, 10521057. https://doi.org/10.1016/j.saa.2012.07.085CrossRefGoogle ScholarPubMed
Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: Small particle, big player. Journal of Hematology Oncology, 8(1), 83. https://doi.org/10.1186/s13045-015-0181-xCrossRefGoogle ScholarPubMed
Zhao, S., Huang, G., Mu, S., An, C., & Chen, X. (2017). Immobilization of phenanthrene onto gemini surfactant modified sepiolite at solid/aqueous interface: Equilibrium, thermodynamic and kinetic studies. Science of the Total Environment, 598, 619627. https://doi.org/10.1016/j.scitotenv.2017.04.120CrossRefGoogle ScholarPubMed
Zhou, H. (2016). Mixture of palygorskite and montmorillonite (paly-mont) and its adsorptive application for mycotoxins. Applied Clay Science, 131, 140143. https://doi.org/10.1016/j.clay.2016.03.012CrossRefGoogle Scholar