Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-29T10:42:39.525Z Has data issue: false hasContentIssue false

Characterization of Hydroxy-Interlayered Vermiculite and Illite/Smectite Interstratified Minerals from the Weathering of Chlorite in a Cryorthod

Published online by Cambridge University Press:  28 February 2024

Dominique Righi
Affiliation:
UA 721, CNRS, Laboratoires de Pédologie et Pétrologie de la Surface, Faculté des Sciences, 86022 Poitiers-Cedex, France
Sabine Petit
Affiliation:
UA 721, CNRS, Laboratoires de Pédologie et Pétrologie de la Surface, Faculté des Sciences, 86022 Poitiers-Cedex, France
Alain Bouchet
Affiliation:
ERM, Mérovée, BP25, 86320, Civaux, France

Abstract

X-ray diffraction, FTIR, and chemical analyses were performed on clay fractions (1–2 µm, <0.1 µm), separated by means of size fractionations and high-gradient magnetic separation techniques, from a Cryorthod developed in a chlorite-mica schist saprolite. Weathering of large phyllosilicates pre-existing in the saprolite involves physical fragmentation and mineralogical transformations. Chloritic minerals in the coarse fractions were the most affected by physical breakdown, while micas were generally preserved. As a consequence, a concentration of mica layers occurred in the coarse clay fraction, while chloritic residues accumulated in the fine clays. These residues exhibited the typical XRD pattern of hydroxy-interlayered intergrade minerals, but the interlayered contaminants were found to be mainly hydroxy-Mg cations. Further mineralogical transformations of the intergrade minerals involved the progressive removal of the hydroxide interlayered sheet and dissolution of chloritic layers. Illite/smectite mixed-layers were formed in the surface horizon of the soil profile. These processes were associated with a strong decrease in Fe and Mg contents in the clay fractions.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W. A. and Kassim, J К, 1983 The origin of ver-miculite developed from lower palaeozoic sedimentary rocks in Mid Wales Soil Sci. Soc. Am. J. 47 316320 10.2136/sssaj1983.03615995004700020029x.CrossRefGoogle Scholar
Bain, D. C., 1977 The weathering of chloritic minerals in some Scottish soils J. Soil Sci. 28 144164 10.1111/j.1365-2389.1977.tb02303.x.CrossRefGoogle Scholar
Barnhisel, R. I., Bertsch, P. M., Dixon, J. B. and Weed, S. B., 1989 Chlorites and hydroxy interlayered vermiculite and smectite Minerals in Soil Environments 2 Madison, Wisconsin Soil Sci. Soc. Am. 729788.Google Scholar
Borchardt, G., Dixon, J. B. and Weed, S. B., 1989 Smectites Minerals in Soil Environments 2 Madison, Wisconsin Soil Sci. Soc. Am. 675727.Google Scholar
Caillère, S. and Hénin, S., 1960 Relationship between the crystallochemical constitution of phyllites and their dehydration temperature application in the case of chlorites Bull. Soc. Fr. Ceram. 48 6367.Google Scholar
Churchman, G. J., 1980 Clay minerals formed from micas and chlorite in some New Zealand soils Clay Miner. 15 5976 10.1180/claymin.1980.015.1.05.CrossRefGoogle Scholar
De Coninck, F., van Ranst, E., Jensen, W., Nahon, D. and Noack, Y., 1983 Trioc-tahedral and dioctahedral chlorite in soils: Examples of a Dystrochrept (Corsica), a Cryorfhod (Norway) and a Ha-pludalf (France) Pétrologie des Altérations et des Sols Strasbourg Sciences Géologiques 7484.Google Scholar
Douglas, L. A., 1967 Sodium citrate-dithionite induced alteration of biotite Soil Sci. 103 191195 10.1097/00010694-196703000-00007.CrossRefGoogle Scholar
Douglas, L. A., Dixon, J В and Weed, S В, 1989 Vermiculites Minerals in Soil Environments 2 Madison, Wisconsin Soil Sci. Soc. Am. 635674.Google Scholar
Ghabru, S. K., Mermut, A. R. and St. Arnaud, R. J., 1990 Isolation and characterization of an iron-rich chlorite-like mineral from soil clays Soil Sci. Soc. Am. J. 54 281287 10.2136/sssaj1990.03615995005400010045x.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonoids in clays J. Soil Sci. 4 233237 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
INRA, Référentiel Pédologique, Principaux Sols d’Europe 1992 Paris INRA.Google Scholar
Jeanroy, E., 1972 Analyse totale des silicates naturels par spectrophotométrie d’absorption atomique. Application au sol et à ses constituants Chim. Anal. 54 159166.Google Scholar
Lanson, B. and Besson, G., 1992 Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns Clays & Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
Makumbi, L. and Herbillon, A. J., 1972 Vermiculitisation expérimentale d’une chlorite Bull. Groupe Fr. Argiles XXIV 153164 10.3406/argil.1972.1167.CrossRefGoogle Scholar
Mehra, O. P. and Jackson, M. L., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Proust, D., Eymery, J.-P. and Beaufort, D., 1986 Super-gene vermiculitization of a magnesian chlorite: Iron and magnesium removal processes Clays & Clay Minerals 34 572580 10.1346/CCMN.1986.0340511.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Miner. Soc. 249359.CrossRefGoogle Scholar
Reynolds, R. C., 1985 Description of Program NEWMOD for the Calculation of the One-dimensional X-ray Diffraction Patterns of Mixed-layered Clays 8 Brook Road, Hanover, New Hampshire R. C. Reynolds.Google Scholar
Righi, D. and Jadault, P., 1988 Improving soil clay minerals studies by high-gradient magnetic separation Clay Miner. 23 225232 10.1180/claymin.1988.023.2.09.CrossRefGoogle Scholar
Righi, D. and Lorphelin, L., 1986 Weathering of silt and clay in soils of a toposequence in the Himalayas, Nepal Geoderma 39 141155 10.1016/0016-7061(86)90072-8.CrossRefGoogle Scholar
Righi, D. and Lorphelin, L., 1987 The soils of a typical slope in the Himalayas (Nepal): Their main characteristics and distribution Catena 14 533551 10.1016/0341-8162(87)90004-X.CrossRefGoogle Scholar
Righi, D. and Meunier, A., 1991 Characterization and genetic interpretation of clays in an acid brown soil (Dystrochrept) developed in a granitic saprolite Clays & Clay Minerals 39 519530 10.1346/CCMN.1991.0390507.CrossRefGoogle Scholar
Ross, G. J., Wang, C., Ozkan, A. I. and Rees, H. W., 1982 Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite-mica schist Geoderma 27 255267 10.1016/0016-7061(82)90034-9.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B. and Hossner, L. R., 1981 Transformation of chlorite to smectite through regularly interstratified intermediates Soil Sci. Soc. Am. J. 45 650656 10.2136/sssaj1981.03615995004500030043x.CrossRefGoogle Scholar
Stucki, J. W., Golden, D. C. and Roth, C. B., 1984 Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites Clays & Clay Minerals 32 350356 10.1346/CCMN.1984.0320502.CrossRefGoogle Scholar
Tamura, T., 1958 Identification of clay minerals from acid soils J. Soil Sci. 9 141147 10.1111/j.1365-2389.1958.tb01906.x.CrossRefGoogle Scholar
USD A, Clés de la taxonomy des sols 1986 Ithaca, New York Cornell University.Google Scholar
Weed, S. B. and Bowen, L. H., 1990 High-gradient magnetic concentration of chlorite and hydroxy-interlayered minerals in soil clays Soil Sci. Soc. Am. J. 54 274280 10.2136/sssaj1990.03615995005400010044x.CrossRefGoogle Scholar