Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-31T05:57:14.931Z Has data issue: false hasContentIssue false

Clay Minerals in Skin Drug Delivery

Published online by Cambridge University Press:  01 January 2024

César Viseras*
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avda. de Las Palmeras 4, 18100 Armilla, Granada, Spain
Esperanza Carazo
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
Ana Borrego-Sánchez
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avda. de Las Palmeras 4, 18100 Armilla, Granada, Spain
Fátima García-Villén
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
Rita Sánchez-Espejo
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
Pilar Cerezo
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
Carola Aguzzi
Affiliation:
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain

Abstract

Clays have played an important role in medicine since the dawn of mankind and are still applied widely as active ingredients and/or excipients in pharmaceutical formulations. Due to their outstanding properties of large retention capacity, swelling and rheological properties, and relative low cost, they have been used widely as advanced carriers for the efficient delivery of drugs by modifying their release (rate and/or time), increasing the stability of the drug, improving the dissolution profile of a drug, or enhancing their intestinal permeability. In addition, recent studies have shed new light on the potential of clay minerals in the nanomedicine field due to their biocompatibility, beneficial effects of clay nanoparticles on cellular adhesion, proliferation, and differentiation. Use as active ingredients and excipients are exerted via the oral and topical administration pathways. Skin drug delivery represents an attractive alternative to the oral route, providing local and/or systemic drug delivery. Due to their complex structures, however, most drugs penetrate the human skin only with difficulty. Enormous efforts have been invested, therefore, in developing advanced drug delivery systems able to overcome the skin barrier. Most strategies require the use of singular materials with new properties. In particular, and on the basis of their inherent properties, clay minerals are ideal candidates for the development of intelligent skin drug delivery systems. In this article, the properties of clay materials and their use in the skin-addressed pharmaceutical field are reviewed. A brief introduction of skin physiology and biopharmaceutical features of penetration by a drug through the skin layers is also included and is designed to shed light on the optimum properties of ideal nanosystems for advanced skin drug delivery. Special attention is devoted to the pharmacological functions of clays and their biomedical applications in pelotherapy, wound healing, regenerative medicine, antimicrobial, and dermocosmetics.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguzzi, C., Cerezo, P., Viseras, C., & Caramella, C. (2007). Use of clays as drug delivery systems: possibilities and limitations. Applied Clay Science, 36, 2236.CrossRefGoogle Scholar
Aguzzi, C., Sánchez-Espejo, R., Cerezo, P., Machado, J., Bonferoni, C., Rossi, S., & Viseras, C. (2013). Networking and rheology of concentrated clay suspensions “matured” in mineral medicinal water. International Journal of Pharmaceutics, 453, 473479.CrossRefGoogle Scholar
Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152157.CrossRefGoogle ScholarPubMed
Aguzzi, C., Sandri, G., Cerezo, P., Carazo, E., and Viseras, C. (2016) Health and medical applications of tubular clay minerals. Developments in clay science (pp. 708725, Vol. 7). Amsterdam: Elsevier.Google Scholar
Alexander, P. (1973) In: R. G. Harry (Ed.), Harry's Cosmeticology. The principles and practice of modern cosmetics, Vol. I. 6th ed. London: Leonard Hill Books. (a) Sunscreen, Suntan and Sunburn Preparations, 328 pp.Google Scholar
Ambrogi, V., Pietrella, D., Nocchetti, M., Casagrande, S., Moretti, V., De Marco, S., & Ricci, M. (2017). Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of Colloid and Interface Science, 491, 265272.CrossRefGoogle ScholarPubMed
Aulton, M. E., & Taylor, K. M. (Eds.). (2017). Aulton's pharmaceutics EBook: The design and manufacture of medicines. Amsterdam: Elsevier Health Sciences.Google Scholar
Awad, M. E., López-Galindo, A., El-Rahmany, M. M., El-Desoky, H. M., & Viseras, C. (2017). Characterization of Egyptian kaolins for health-care uses. Applied Clay Science, 135, 176189.CrossRefGoogle Scholar
Barry, B. W. (1983). Dermatological Formulations (pp. 4994). New York: Marcel Dekker.Google Scholar
Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., & Viseras, C. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205212.CrossRefGoogle Scholar
Beringhs, A. O. R., Rosa, J. M., Stulzer, H. K., Budal, R. M., & Sonaglio, D. (2013). Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design. AAPS PharmSciTech, 14, 445455.CrossRefGoogle Scholar
Bonferoni, M. C., Cerri, G., De'Gennaro, M., Juliano, C., & Caramella, C. (2007). Zn2+-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy: in-vitro characterization and preliminary formulation studies. Applied Clay Science, 36, 95102.CrossRefGoogle Scholar
Bonifacio, M. A., Gentile, P., Ferreira, A. M., Cometa, S., & De Giglio, E. (2017). Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 163, 280291.CrossRefGoogle ScholarPubMed
British Chambers of Commerce (BCC) 2016. Annual Economic Report.Google Scholar
British Pharmacopoeia Commission (2018) British Pharmacopoeia. London: TSO.Google Scholar
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16, 143155.CrossRefGoogle ScholarPubMed
Carazo, E., Borrego-Sánchez, A., García-Villén, F., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., and Viseras, C. (2018) Advanced inorganic nanosystems for skin drug delivery. The Chemical Record (pp. 891899). https://doi.org/10.1002/tcr.201700061CrossRefGoogle Scholar
Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health. A review. Applied Clay Science, 21, 155163.CrossRefGoogle Scholar
Carretero, M.I., Gomes, C., and Tateo, F. (2006). Clays and human health. In Bergaya, F., Theng, B.K.G., and Lagaly, G. (Eds.). Handbook of clay science (pp. 717741). Developments in Clay Science, 1, Elsevier, Amsterdam.CrossRefGoogle Scholar
Carter, H.M. (1940) Fingernail Cleaning Composition. U.S. Patent No. 2,197,630. Washington DC: U.S. Patent and Trademark Office.Google Scholar
Cerri, G., de'Gennaro, M., Bonferoni, M.C., Caramella, C., and Juliano, C. (2006) Zn exchanged clinoptilolite rich rock as carrier for erythromycin in antiacne therapy: an in vitro evaluation. In: Book of Abstracts of the 7th International Conference on the Occurrence, Properties, and Utilization of Natural Zeolites Socorro, New Mexico, USA.Google Scholar
Cerri, G., De'Gennaro, M., Bonferoni, M. C., & Caramella, C. (2004). Zeolites in biomedical application: Zn-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy. Applied Clay Science, 27, 141150.CrossRefGoogle Scholar
Chen, H., Ye, Z., Sun, L., Li, X., Shi, S., Hu, J., & Wang, B. (2018). Synthesis of chitosan-based micelles for pH responsive drug release and antibacterial application. Carbohydrate Polymers, 189, 6571.CrossRefGoogle ScholarPubMed
Cornejo, J., Galán, E., and Ortega, M. (1990) Las arcillas en formulaciones farmacéuticas. Conferencias de IX y X Reuniones de la Sociedad Española de Arcillas, 5168.Google Scholar
Couto, A., Fernandes, R., Cordeiro, M. N. S., Reis, S.S., Ribeiro, R.T., & Pessoa, A. M. (2014). Dermic diffusion and stratum corneum: a state of the art review of mathematical models. Journal of Controlled Release, 177, 7483.CrossRefGoogle ScholarPubMed
Da Silva, G. R., Da Silva-Cunha, A., Vieira, L. C., Silva, L. M., Ayres, E., Oréfice, R. L., & Behar-Cohen, F. (2013). Montmorillonite clay based polyurethane nanocomposite as substrate for retinal pigment epithelial cell growth. Journal of Materials Science: Materials in Medicine, 24, 13091317.Google ScholarPubMed
Dário, G. M., da Silva, G. G., Gonçalves, D. L., Silveira, P., Junior, A. T., Angioletto, E., & Bernardin, A. M. (2014). Evaluation of the healing activity of therapeutic clay in rat skin wounds. Materials Science and Engineering: C, 43, 109116.CrossRefGoogle ScholarPubMed
De Vos, P. (2010). European materia medica in historical texts: longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 132, 2847.CrossRefGoogle ScholarPubMed
Demir, A. K., Elçin, A. E., & Elçin, Y. M. (2018). Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Materials Science and Engineering: C, 89, 814.CrossRefGoogle Scholar
Fakhrullin, R. F., & Lvov, Y. M. (2016). Halloysite clay nanotubes for tissue engineering. Future Medicine, 11, 22432246.Google ScholarPubMed
Falkinham, J. O., Wall, T. E., Tanner, J. R., Tawaha, K., Alali, F. Q., Li, C., & Oberlies, N. H. (2009). Proliferation of antibiotic-producing bacteria and concomitant antibiotic production as the basis for the antibiotic activity of Jordan's red soils. Applied and Environmental Microbiology, 75, 27352741.CrossRefGoogle ScholarPubMed
Fernández-González, M. V., Martín-García, J. M., Delgado, G., Párraga, J., Carretero, M. I., & Delgado, R. (2017). Physical properties of peloids prepared with medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 135, 465474.CrossRefGoogle Scholar
Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751760.CrossRefGoogle Scholar
Friedlander, L. R., Puri, N., Schoonen, A. A., & Karzai, W. (2015). The effect of pyrite on Escherichia coli in water: proof-of-concept for the elimination of waterborne bacteria by reactive minerals. Journal of Water and Health, 13, 4253.CrossRefGoogle ScholarPubMed
Gabriel, D.M. (1973) Vanishing and foundation creams in Harry's Cosmeticology (6th ed.), The principles and practice of modern cosmetics (p. 83, vol. I). London: Leonard Hill Books.Google Scholar
Ghadiri, M., Chrzanowski, W., Lee, W. H., & Rohanizadeh, R. (2014). Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 4, 3533235343.CrossRefGoogle Scholar
Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5, 2946729481.CrossRefGoogle Scholar
Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., & Delgado, R. (2013). Peloids and pelotherapy: historical evolution, classification and glossary. Applied Clay Science, 75, 2838.CrossRefGoogle Scholar
Hamilton, A. R., Hutcheon, G. A., Roberts, M., & Gaskell, E. E. (2014). Formulation and antibacterial profiles of clay–ciprofloxacin composites. Applied Clay Science, 87, 129135.CrossRefGoogle Scholar
Haraguchi, K., Takehisa, T., & Ebato, M. (2006). Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules, 7, 32673275.CrossRefGoogle ScholarPubMed
Iannuccelli, V., Maretti, E., Bellini, A., Malferrari, D., Ori, G., Montorsi, M., & Leo, E. (2018). Organo-modified bentonite for gentamicin topical application: interlayer structure and in vivo skin permeation. Applied Clay Science, 158, 158168.CrossRefGoogle Scholar
Ijiri, H., Sato, K., Suzuki, M., and Hasegawa, Y. (2015) U.S. Patent No. 9,114,266. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Katti, K. S., Katti, D. R., & Dash, R. (2008). Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomedical Materials, 3, 034122.CrossRefGoogle ScholarPubMed
Khiari, I., Mefteh, S., Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., & Viseras, C. (2014). Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Applied Clay Science, 101, 141148.CrossRefGoogle Scholar
Kommireddy, D. S., Ichinose, I., Lvov, Y. M., & Mills, D. K. (2005). Nanoparticle multilayers: surface modification for cell attachment and growth. Journal of Biomedical Nanotechnology, 1, 286290.CrossRefGoogle Scholar
Lam, P. L., Lee, K. K. H., Wong, R. S. M., Cheng, G. Y. M., Bian, Z. X., Chui, C. H., & Gambari, R. (2018). Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Critical Reviews in Microbiology, 44, 4078.CrossRefGoogle ScholarPubMed
Liu, M., Dai, L., Shi, H., Xiong, S., & Zhou, C. (2015). In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Materials Science and Engineering: C, 49, 700712.CrossRefGoogle ScholarPubMed
Liu, M., Zhang, Y., Wu, C., Xiong, S., & Zhou, C. (2012). Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. International Journal of Biological Macromolecules, 51, 566575.CrossRefGoogle ScholarPubMed
Lizarbe, M. A., Olmo, N., & Gavilanes, J. G. (1987). Outgrowth of fibroblasts on sepiolite-collagen complex. Biomaterials, 8, 3537.CrossRefGoogle ScholarPubMed
López-Galindo, A. and Viseras, C. (2004) Pharmaceutical and cosmetic applications of clays. In Interface science and technology (pp. 267289, Vol. 1). Elsevier.Google Scholar
López-Galindo, A., Viseras, C., Aguzzi, C., and Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. In Bergaya, F. & Lagaly, G. (Eds), Handbook of clay science (pp. 794 299324), 2nd edition. Developments in clay science, 3, Elsevier, Amsterdam.Google Scholar
López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.CrossRefGoogle Scholar
Macgregor, A. (2013) Medicinal terra sigillata: a historical, geographical and typological review. In Duffin, C. J., Moody, R. T. J. & Gardner-Thorpe, C. (Eds), A history of geology and medicine (pp. 113136). Special Publications, 375. London: Geological Society.Google Scholar
Mantle, D., Gok, M. A., & Lennard, T. W. (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse drug reactions and toxicological reviews, 20, 89103.Google ScholarPubMed
Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2015). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449454.CrossRefGoogle Scholar
Mauro, N., Chiellini, F., Bartoli, C., Gazzarri, M., Laus, M., Antonioli, D., & Ferruti, P. (2017). RGD-mimic polyamidoamine–montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 11, 21642175.CrossRefGoogle ScholarPubMed
Medicamentarius, C. (1866). Pharmacophea Française (pp. 4849). París: Jean-Baptiste Baillière.Google Scholar
Mieszawska, A. J., Llamas, J. G., Vaiana, C. A., Kadakia, M. P., Naik, R. R., & Kaplan, D. L. (2011). Clay enriched silk biomaterials for bone formation. Acta Biomaterialia, 7, 30363041.CrossRefGoogle ScholarPubMed
Ministerio de Sanidad y Consumo (2015) Agencia Española de Medicamentos y Productos Sanitarios (Eds). Real Farmacopea Española, 5a Edición.Google Scholar
Mishra, R. K., Ramasamy, K., Lim, S. M., Ismail, M. F., & Majeed, A. B. A. (2014). Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. Journal of Materials Science: Materials in Medicine, 25, 19251939.Google ScholarPubMed
Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—a review. International Journal of Pharmaceutics, 534, 213219.CrossRefGoogle Scholar
Morrison, K. D., Misra, R., & Williams, L. B. (2016). Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance. Scientific Reports, 6, 19043.CrossRefGoogle Scholar
Mousa, M., Evans, N. D., Oreffo, R. O., & Dawson, J. I. (2018). Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials, 159, 204214.CrossRefGoogle ScholarPubMed
Mukhopadhyay, K., Rangan, K.K., & Sudarshan, T.S. (2018). Clay composites and their applications. U.S. Patent Application No. 10/046,079.Google Scholar
Naumenko, E. A., Guryanov, I. D., Yendluri, R., Lvov, Y. M., & Fakhrullin, R. F. (2016). Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale, 8, 72577271.CrossRefGoogle ScholarPubMed
Ng, K. W., & Lau, W. M. (2015). Skin deep: the basics of human skin structure and drug penetration. In Dragicevic, N. & Maibach, H. I. (Eds.), Percutaneous penetration enhancers chemical methods in penetration enhancement (pp. 311). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Ninan, N., Muthiah, M., Park, I. K., Wong, T. W., Thomas, S., & Grohens, Y. (2015). Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polymer Reviews, 55, 453490.CrossRefGoogle Scholar
Noori, S., Kokabi, M., & Hassan, Z. M. (2018). Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. Journal of Applied Polymer Science, 135(21) https://doi.org/10.1002/app.46311.CrossRefGoogle Scholar
Olad, A., & Azhar, F. F. (2014). The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceramics International, 40, 1006110072.CrossRefGoogle Scholar
Olmo, N., Lizarbe, M. A., & Gavilanes, J. G. (1987). Biocompatibility and degradability of sepiolite-collagen complex. Biomaterials, 8, 6769.CrossRefGoogle ScholarPubMed
Otto, C.C. (2014) In vitro and in vivo assessment of the mechanism of action and efficacy of antibacterial clays for the treatment of cutaneous infections. Arizona State University.Google Scholar
Otto, C. C., & Haydel, S. E. (2013a). Microbicidal clays: composition, activity, mechanism of action, and therapeutic applications. In Méndez-Vilas, A. (Ed.), Microbial pathogens and strategies for combating them: Science, technology and education (Vol. 2, pp. 11691180). Badajoz: Formatex Research Center.Google Scholar
Otto, C. C., & Haydel, S. E. (2013b). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8, e64068 https://doi.org/10.1371/journal.pone.0064068.CrossRefGoogle ScholarPubMed
Otto, C. C., Kilbourne, J., & Haydel, S. E. (2016). Natural and ionexchanged illite clays reduce bacterial burden and inflammation in cutaneous meticillin-resistant Staphylococcus aureus infections in mice. Journal of Medical Microbiology, 65, 1927.CrossRefGoogle ScholarPubMed
Otto, C. C., Koehl, J. L., Solanky, D., & Haydel, S. E. (2014). Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PloS one, 9(12), e115172.CrossRefGoogle Scholar
Perfitt, R.J. and Carimbocas, C.A.R. (2017) U.S. Patent No. 9,801,793. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Pesciaroli, C., Viseras, C., Aguzzi, C., Rodelas, B., & González-López, J. (2016). Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Applied Clay Science, 132, 5967.CrossRefGoogle Scholar
Pharmacopeia, U. S. (2018) United States Pharmacopeia and National Formulary (USP 41-NF 36). Rockville, MD: United States Pharmacopeial Convention, 2016.Google Scholar
Popryadukhin, P. V., Dobrovolskaya, I. P., Yudin, V. E., Ivan'kova, E. M., Smolyaninov, A. B., & Smirnova, N. V. (2012). Composite materials based on chitosan and montmorillonite: prospects for use as a matrix for cultivation of stem and regenerative cells. Cell and Tissue Biology, 6, 8288.CrossRefGoogle Scholar
Prow, T. W., Grice, J. E., Lin, L. L., Faye, R., Butler, M., Becker, W., & Roberts, M. S. (2011). Nanoparticles and microparticles for skin drug delivery. Advanced Drug Delivery Reviews, 63, 470491.CrossRefGoogle ScholarPubMed
Quintela, A., Terroso, D., Da Silva, E. F., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441451.CrossRefGoogle Scholar
Rangappa, S., Rangan, K. K., Sudarshan, T. S., & Murthy, S. N. (2017). Evaluation of lidocaine loaded clay based dermal patch systems. Journal of Drug Delivery Science and Technology, 39, 450454.CrossRefGoogle Scholar
Rebelo, M., Viseras, C., López-Galindo, A., Rocha, F., & da Silva, E.F. (2011). Rheological and thermal characterization of peloids made of selected Portuguese geological materials. Applied Clay Science, 52, 219227.CrossRefGoogle Scholar
Rochette, S., Doyon, S., and Elkurdi, M. (2017) U.S. Patent Application No. 15/293,733.Google Scholar
Saha, K., Butola, B. S., & Joshi, M. (2014). Synthesis and characterization of chlorhexidine acetate drug-montmorillonite intercalates for antibacterial applications. Applied Clay Science, 101, 477483.CrossRefGoogle Scholar
Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., Lopez-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810814.CrossRefGoogle ScholarPubMed
Sánchez-Espejo, R., Cerezo, P., Aguzzi, C., López-Galindo, A., Machado, J., & Viseras, C. (2015). Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Applied Clay Science, 116, 17.CrossRefGoogle Scholar
Sandri, G., Aguzzi, C., Rossi, S., Bonferoni, M. C., Bruni, G., Boselli, C., & Ferrari, F. (2017). Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomaterialia, 57, 216224.CrossRefGoogle ScholarPubMed
Sandri, G., Bonferoni, M. C., Ferrari, F., Rossi, S., Aguzzi, C., Mori, M., & Caramella, C. (2014). Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydrate Polymers, 102, 970977.CrossRefGoogle ScholarPubMed
Sandri, G., Bonferoni, M.C., Rossi, S., Ferrari, F., Aguzzi, C., Viseras, C., and Caramella, C. (2016) Clay minerals for tissue regeneration, repair, and engineering. In Ågren, M.S. (Ed). Wound healing biomaterial (pp. 385402). Elsevier.Google Scholar
Sarfaraz, N. (Ed.). (2004). Handbook of pharmaceutical manufacturing formulations: Semisolid products (p. 113). Boca Raton, Florida, USA: CRC Press.Google Scholar
Tao, L., Zhonglong, L., Ming, X., Zezheng, Y., Zhiyuan, L., Xiaojun, Z., & Jinwu, W. (2017). In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 7, 5410054110.CrossRefGoogle Scholar
Tenci, M., Rossi, S., Aguzzi, C., Carazo, E., Sandri, G., Bonferoni, M. C., & Ferrari, F. (2017). Carvacrol/clay hybrids loaded into in situ gelling films. International Journal of Pharmaceutics, 531, 676688.CrossRefGoogle ScholarPubMed
Timothy, G. R. A. Y., Cziryak, P., & Kljuic, A. (2015). U.S. Patent No., 9, 034,302.Google Scholar
Tuba, T. (2018) Antibacterial Clay Compositions for Use as a Topical Ointment U.S. Patent Application No. 15/216,940. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
Vaiana, C. A., Leonard, M. K., Drummy, L. F., Singh, K. M., Bubulya, A., Vaia, R. A., & Kadakia, M. P. (2011). Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules, 12, 31393146.CrossRefGoogle ScholarPubMed
Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: perspectives of innovations. Applied Clay Science, 36, 141147.CrossRefGoogle Scholar
Viseras, C., Aguzzi, C., and Cerezo, P. (2015) Medical and health applications of natural mineral nanotubes. In Natural mineral nanotubes: Properties and applications (pp. 437448). Apple Academic Press Oakville, Canada and Waretown, New Jersey, USA.CrossRefGoogle Scholar
Viseras, C., Aguzzi, C., Cerezo, P., & Bedmar, M. C. (2008). Biopolymer–clay nanocomposites for controlled drug delivery. Materials Science and Technology, 24, 10201026.CrossRefGoogle Scholar
Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 3750.CrossRefGoogle Scholar
Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug delivery. Applied Clay Science, 48, 291295.CrossRefGoogle Scholar
Wang, S., Castro, R., An, X., Song, C., Luo, Y., Shen, M., & Shi, X. (2012). Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. Journal of Materials Chemistry, 22, 2335723367.CrossRefGoogle Scholar
Wang, Z., Zhao, Y., Luo, Y., Wang, S., Shen, M., Tomás, H., & Shi, X. (2015). Attapulgite-doped electrospun poly (lactic-co-glycolic acid) nanofibers enable enhanced osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 5, 23832391.CrossRefGoogle Scholar
Williams, L. B., Haydel, R. F., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437452.CrossRefGoogle ScholarPubMed
Williams, L. B., Holland, M., Eberl, D. D., Brunet, T., & Brunet de Courrsou, L. (2004). Killer clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 38.Google Scholar
Williams, L. B., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science & Technology, 45, 37683773.CrossRefGoogle ScholarPubMed
Zhang, J.A., Zhang, Z., and Zhang, W. (2018) Burn ointment for promoting tissue regeneration and skin growth, and preparation method therefor. U.S. Patent Application No. 15/542,420.Google Scholar
Zou, Q., Cai, B., Li, J., Li, J., & Li, Y. (2017). In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. Journal of Biomaterials Science, Polymer Edition, 28, 601615.CrossRefGoogle ScholarPubMed