Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-18T12:16:07.465Z Has data issue: false hasContentIssue false

Comparison of Epithermal Kaolin Deposits from the Etili Area (Çanakkale, Turkey): Mineralogical, Geochemical, and Isotopic Characteristics

Published online by Cambridge University Press:  01 January 2024

Hatice Ünal Ercan*
Affiliation:
Chemistry and Chemical Processing Technologies, Konya Technical University, Konya, Turkey
Ö. Işık Ece
Affiliation:
Faculty of Mines, Istanbul Technical University, Istanbul, Maslak 34469, Turkey Department of Geology, University of Georgia, Athens, GA 30602-2501, USA
Emin Çiftçi
Affiliation:
Faculty of Mines, Istanbul Technical University, Istanbul, Maslak 34469, Turkey
Ayça Aydın
Affiliation:
Faculty of Mines, Istanbul Technical University, Istanbul, Maslak 34469, Turkey

Abstract

Hydrothermal solutions related to magmatic intrusions that occurred during the Oligo-Miocene resulted in advanced multi-stage alterations and, to varying degrees, kaolinization over a wide area of the Biga Peninsula. The most important formations in these kaolin deposits occurred along the NE–SW-trending Çan-Etili-Bayramiç fault zone. The Bahadırlı, Duman, and Çaltıkara quarries are well preserved kaolin deposits throughout these fault zones located within the Çan Volcanics. Mineralogical, geochemical, and isotopic analyses were performed to identify the environments of formation of kaolins and the origin of the hydrothermal solution that led to the formation of these deposits.

The mineralogical assemblages of each of the quarries differ from each other. The Bahadırlı kaolin quarry comprises kaolinite + alunite ± quartz ± smectite ± plagioclase ± K-feldspar. The Çaltıkara kaolin deposits consist of kaolinite + quartz + alunite ± iron-oxide and ore minerals. The Duman kaolin quarry was considered in two different slopes as a hanging wall block and a footwall block, and the blocks contain kaolinite + quartz + plagioclase ± smectite and kaolinite ± alunite ± smectite ± quartz ± plagioclase ± K-Feldspar ± gypsum, respectively. During petrographic investigations, it was observed that kaolinization occurred generally in K-feldspar and plagioclase phenocrysts and partially in the matrix. Mineralogical and micromorphological investigations revealed that the kaolin group includes the dioctahedral minerals kaolinite and halloysite. According to the trace element contents of the kaolinites, the Çaltıkara and Bahadırlı deposits had a hypogene origin, while the Duman deposit had a supergene origin. δ18O isotopic values of kaolinites ranged from +10.3 to +18.3‰. δ34S isotopic values ranged from –17.2 to +20.2‰ of alunite, galena, and pyrite minerals, which indicate different formation environments for the kaolin quarries. 40Ar/39Ar dating of alunite revealed that the timing of acid-sulfate alteration was compatible with the magmatic intrusions. All these data revealed the mineralogical, chemical, and isotopic differences caused by the effect of different hydrothermal processes in three kaolin deposits located on the same fault zone, close to each other and similar in age.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article was updated to correct Table 1.

Associate Editor: Selahattin Kadir.

References

Ağdemir, N., Kιrιkoğlu, M. S., Lehmann, B., & Tietze, J. (1994). Petrology and alteration geochemistry of the epithermal Balya Pb–Zn–Ag deposit, NW Turkey. Mineralium Deposita, 29, 366371.CrossRefGoogle Scholar
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., & Mitchell, J. G. (2000). Petrogenic evolution of Late Cenozoic, post-collisional volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 6795.CrossRefGoogle Scholar
Altunkaynak, S., & Dilek, Y. (2006). Timing and nature of post-collisional volcanism in western Anatolia and geodynamic implications. Special Papers - Geological Society of America, 409, 321.Google Scholar
Altunkaynak, Ş., & Dilek, Y. (2013). Eocene mafic volcanism in northern Anatolia: Its causes and mantle sources in the absence of active subduction. International Geology Review, 55(13), 16411659.CrossRefGoogle Scholar
Altunkaynak, Ş., & Genç, S. C. (2008). Petrogenesis and time-progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102, 316340.CrossRefGoogle Scholar
Altunkaynak, Ş., & Yιlmaz, Y. (1998). The mount Kozak magmatic complex, western Anatolia. Journal of Volcanology and Geothermal Research, 85(1–4), 211231.CrossRefGoogle Scholar
Altunkaynak, Ş., Sunal, G., Aldanmaz, E., Genç, C. Ş., Dilek, Y., Furnes, H., & Yιldιz, M. (2012). Eocene granitic magmatism in NW Anatolia (Turkey) revisited: New implications from comparative zircon SHRIMP U-Pb and 40Ar/39Ar geochronology and isotope geochemistry on magma genesis and emplacement. Lithos, 155, 289309.CrossRefGoogle Scholar
Aydιn, A. (2014). Çan-Çanakkale bölgesi kaolinit yataklarιnιn ve çevresinin petrografik mineralojik ve jeokimyasal incelenmesi (MS Thesis (p. 107). Istanbul Technical University.Google Scholar
Aydιn, Ü. (2019). Biga Yarιmadasι'ndaki granitoyitlerin (KB Anadolu, Türkiye) petrolojik ve jeokimyasal özellikleri. Maden Tetkik Arama Dergisi, 160, 81116.Google Scholar
Baba, A., & Gunduz, O. (2010). Effect of alteration zones on water quality: A case study from biga peninsula, Turkey. Archives of Environmental Contamination and Toxicology, 58(3), 499513.CrossRefGoogle ScholarPubMed
Bailey, S. W. (1993). Review of the structural relationships of the kaolin minerals. In Murray, H. H., Bunday, W. M., & Harvey, C. C. (Eds.), Kaolin Genesis and Utilization Boulder, Colorado, USA 1, 2542. Clay Minerals Society Special Publication.Google Scholar
Barnes, H. L., & Seward, T. M. (1997). Geothermal systems and mercury deposits. Geochemistry of Hydrothermal Ore Deposits, 3, 699736.Google Scholar
Beaufort, D., Cassagnabere, A., Petit, S., Lanson, B., Berger, G., Lacharpagne, J. C., & Johansen, H. (1998). Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Minerals, 33(2), 297316.CrossRefGoogle Scholar
Berger, B.R., & Henley, R.W. (1989). Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States. Economic Geology Monograph, 6. https://doi.org/10.5382/Mono.06.32CrossRefGoogle Scholar
Birkle, P., & Satιr, M. (1995). Dating, geochemistry and geodynamic significance of the tertiary magmatism of the Biga Peninsula, NW-Turkey. Geology of the Black Sea Region. In Erler, A., Ercan, T., Bingöl, E., Örçen, S. (Eds.), Geology of the Black Sea Region (pp. 171180). MTA.Google Scholar
Buyukkahraman, G., & Coban, F. (2013). Mineralogical-geochemical characteristics and genetic implication of Gumeli (Ivrindi, BALIKESIR) Talc occurrences in the Karakaya complex (NW Turkey). European Scientific Journal, 9(33).Google Scholar
Çelik Karakaya, M., Karakaya, N., Temel, A., & Yavuz, F. (2021). Mineralogical and geochemical properties and genesis of kaolin and alunite deposits SE of Aksaray (Central Turkey). Applied Geochemistry, 124, 104830.CrossRefGoogle Scholar
Cheshire, M. C., Bish, D. L., Cahill, J. F., Kertesz, V., & Stack, A. G. (2018). Geochemical evidence for rare-earth element mobilization during kaolin diagenesis. ACS Earth and Space Chemistry, 2(5), 506520.CrossRefGoogle Scholar
Çiçek, M., Oyman, T., & Palmer, M. R. (2021). Variation of Cu, Fe, S and Pb isotopes in sulfides from hydrothermal mineralization from the Yenice region in Çanakkale, Biga Peninsula. NW Turkey. Ore Geology Reviews, 136, 104255.CrossRefGoogle Scholar
Cooke, D. R., & Simmons, S. F. (2000). Characteristics and genesis of epithermal gold deposits. Society of Economic Geology Reviews, 13, 221244.Google Scholar
Cunningham, C. G., Rye, R. O., Steven, T. A., & Mehnert, H. H. (1984). Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah. Economic Geology, 79(1), 5071.CrossRefGoogle Scholar
Cunningham, C. G., Rye, R. O., Rockwell, B. W., Kunk, M. J., & Councell, T. B. (2005). Supergene destruction of a hydrothermal replacement alunite deposit at Big Rock Candy Mountain, Utah: Mineralogy, spectroscopic remote sensing, stable-isotope, and argon-age evidences. Chemical Geology, 215(1–4), 317337.CrossRefGoogle Scholar
Delaloye, M., & Bingol, E. (2000). Granitoids from Western and Northwestern Anatolia: Geochemistry and modeling of geodynamic evolution. International Geology Review, 42, 241268.CrossRefGoogle Scholar
Dewey, J. F., & Şengör, A. C. (1979). Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 8492.2.0.CO;2>CrossRefGoogle Scholar
Dill, H. G. (2016). Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16129.CrossRefGoogle Scholar
Dill, H. G., & Horn, E. E. (1996). The origin of a hypogene sarabauite-calcite mineralization at the Lucky Hill Au-Sb mine Sarawak, Malaysia. Journal of Southeast Asian Earth Sciences, 14(1–2), 2935.CrossRefGoogle Scholar
Dill, H. G., Bosse, H. R., Henning, K. H., & Fricke, A. (1997). Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of Northwestern Peru. Mineralium Deposita, 32, 149163.CrossRefGoogle Scholar
Dill, H. G., Botz, R., & Luppold, F. W. (2005). Hypogene and supergene alteration of the Late Palaeozoic Ratburi Limestone during the Mesozoic and Cenozoic (Thailand, Surat Thani Province). Implications for the concentration of mineral commodities and hydrocarbons. International Journal of Earth Sciences, 94, 2446.CrossRefGoogle Scholar
Ece, O. I., & Schroeder, P. A. (2007). Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55(1), 1835.CrossRefGoogle Scholar
Ece, O. I., Schroeder, P. A., Smilley, M. J., & Wampler, J. M. (2008). Acid-sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey. Clay Minerals, 43, 281315.CrossRefGoogle Scholar
Ece, O. I., Ekinci, B., Schroeder, P. A., Crowe, D., & Esenli, F. (2013). Origin of the Düvertepe kaolin–alunite deposits in Simav Graben, Turkey: Timing and styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research, 255, 5778.CrossRefGoogle Scholar
Ercan, T., Satir, M., Steinitz, G., Dora, A., Sarifakioglu, E., Adis, C., Walter, H. J., & Yildirim, T. (1995). Features of Tertiary volcanism observed at Biga Peninsula and Gökçeada, Tavsan Islands, NW Anatolia. Bulletin of the Mineral Research and Exploration, 117, 5586. (in Turkish).Google Scholar
Ercan, H. Ü., Ece, Ö. I., Schroeder, P. A., & Karacik, Z. (2016). Differentiating styles of alteration within kaolin-alunite hydrothermal deposits of Çanakkale NW Turkey. Clays and Clay Minerals, 64(3), 245274.CrossRefGoogle Scholar
Ercan, H. Ü., Ece, Ö. I., Schroeder, P. A., & Gülmez, F. (2022). Characteristics and evolution of the Etili silica sinter epithermal deposits, Çanakkale–Turkey: Relation to alkali chloride vs acid-sulfate fluids. Ore Geology Reviews, 142, 104726.CrossRefGoogle Scholar
Erenoğlu, O. (2017). Çan taşι tüfü'nün mineralojik özellikleri ve jeokronolojisi (Biga Yarιmadasι, KB Türkiye). Türkiye Jeoloji Bülteni, 60(3), 433449.CrossRefGoogle Scholar
Erkoyun, H., Kadir, S., & Huggett, J. (2019). Occurrence and genesis of tonsteins in the Miocene lignite, Tunçbilek Basin, Kütahya, western Turkey. International Journal of Coal Geology, 202, 4668.CrossRefGoogle Scholar
Genç, ŞC. (1998). Evolution of the Bayramiç magmatic complex, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1–4), 233249.CrossRefGoogle Scholar
Harris, C., Compton, J. S., & Bevington, S. A. (1999). Oxygen and hydrogen isotope composition of kaolinite deposits, Cape Peninsula, South Africa: Low-temperature, meteoric origin. Economic Geology, 94, 13531366.CrossRefGoogle Scholar
Hayba, D. O., Bethke, P. M., Heald, P., & Foley, N. K. (1985). Geologic, mineralogic, and geochemical characteristics of volcanic-hosted epithermal precious metal deposits. Pp 129167 in Geology and Geochemistry of Epithermal Systems (Berger, B.R. and Bethke, P.M., editors). Reviews in Economic Geology, 2, 250252.Google Scholar
Hedenquist, J. W., Arribas, A., & Gonzalez-Urien, E. (2000). Exploration for epithermal gold deposits. Reviews in Economic Geology, 13(2), 4577.Google Scholar
Hemley, J. J., Meyer, C., Hodgson, C. J., & Thatcher, A. B. (1967). Sulfide solubilities in alteration-controlled systems. Science, 158(3808), 15801582.CrossRefGoogle ScholarPubMed
Hillier, S., Brydson, R., Delbos, E., Fraser, T., Gray, N., Pendlowski, H., & Wilson, I. (2016). Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 51(3), 325350.CrossRefGoogle Scholar
Jolivet, L., & Brun, J. P. (2010). Cenozoic geodynamic evolution of the Aegean. International Journal of Earth Sciences, 99(1), 109138.CrossRefGoogle Scholar
Jolivet, L., & Faccenna, C. (2000). Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19, 10951106.CrossRefGoogle Scholar
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., & Philippon, M. (2013a). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 133.CrossRefGoogle Scholar
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., & Driussi, O. (2013b). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 133.CrossRefGoogle Scholar
Justet, L., & Spell, T. L. (2001). Effusive eruptions from a large silicic magma chamber: The Bearhead Rhyolite, Jemez volcanic field, NM. Journal of Volcanology and Geothermal Research, 107, 241264.CrossRefGoogle Scholar
Kadir, S., Külah, T., Eren, M., Onalgil, N., & Gürel, A. (2014). Mineralogical and geochemical characteristics and genesis of the Güzelyurt alunite-bearing kaolinite deposit within the late Miocene Gördeles ignimbrite, central Anatolia, Turkey. Clays and Clay Minerals, 62, 477499.CrossRefGoogle Scholar
Kadir, S., Ateş, H., Erkoyun, H., Külah, T., & Esenli, F. (2022). Genesis of alunite-bearing kaolin deposit in Mudamköy, member of the Miocene Göbel Formation, Mustafakemalpaşa (Bursa). Turkey. Applied Clay Science, 221, 106407.CrossRefGoogle Scholar
Karacιk, Z., & Yιlmaz, Y. (1998). Geology of the ignimbrites and the associated volcano–plutonic complex of the Ezine area, northwestern Anatolia. Journal of Volcanology and Geothermal Research, 85(1–4), 251264.CrossRefGoogle Scholar
Karacιk, Z., Yιlmaz, Y., Pearce, J. A., & Ece, O. I. (2008). Petrochemistry of the south Marmara granitoids, northwest Anatolia. Turkish Journal of Earth Sciences, 97, 11811200.Google Scholar
Kaymakci, N., Aldanmaz, E., Langereis, C., Spell, T. L., Gurer, O. F., & Zanetti, K. A. (2007). Late Miocene transcurrent tectonics in NW Turkey: Evidence from paleomagnetism and 40Ar-39Ar dating of alkaline volcanic rocks. Geological Magazine, 144(2), 379392.CrossRefGoogle Scholar
Laçin, D., Aysal, N., & Öngen, S. (2021). Geological mineralogical and technological properties of Oligocene-Miocene clay deposits in altered volcanic rocks for the ceramic industry (Western Anatolia, Turkey). Arabian Journal of Geosciences, 14(18), 116.CrossRefGoogle Scholar
Le Pichon, X., Imren, C., Rangin, C., Şengör, A. C., & Siyako, M. (2014). The South Marmara Fault. International Journal of Earth Sciences, 103(1), 219231.CrossRefGoogle Scholar
Lindgren, W. (1933). Mineral Deposits (4th ed., p. 930). McGraw Hill.Google Scholar
Lueth, V. W., Megaw, P. K., Pingitore, N. E., & Goodell, P. C. (2000). Systematic variation in galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico. Economic Geology, 95(8), 16731687.Google Scholar
MacLean, W. H., & Barrett, T. J. (1993). Lithogeochemical techniques using immobile elements. Journal of Geochemical Exploration, 48(2), 109133.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. Jr (1989). X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press (OUP).Google Scholar
Murakami, H., & Ishihara, S. (2008). REE mineralization of weathered crust and clay sediment on granitic rocks in the Sanyo Belt, SW Japan and the Southern Jiangxi Province China. Resource Geology, 58(4), 373401.CrossRefGoogle Scholar
Murray, H. H., & Keller, W. D. (1993). Kaolins, kaolins, and kaolins. In Murray, H. H., Bundy, W. M., & Harvey, C. (Eds.), Kaolin Genesis and Utilization. Clay Minerals Society Special Publication. https://doi.org/10.1346/CMS-SP-1.1CrossRefGoogle Scholar
Mutlu, H., Sarιiz, K., & Kadir, S. (2005). Geochemistry and origin of the Şaphane alunite deposit, western Anatolia, Turkey. Ore Geology Reviews, 26, 3950.CrossRefGoogle Scholar
Okay, A. I. (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: A new structural model. International Journal of Earth Sciences, 89(4), 709727.CrossRefGoogle Scholar
Okay, A. I., & Satir, M. (2000). Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geological Magazine, 137(5), 495516.CrossRefGoogle Scholar
Oyman, T. (2010). Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn deposit in Ayvalik, (Balikesir). Turkey. Ore Geology Reviews, 37(3–4), 175201.CrossRefGoogle Scholar
Oyman, T. (2019). Epithermal Deposits of Turkey. In: Mineral Resources of Turkey Modern Approaches in Solid Earth Sciences, 159223. Springer. https://doi.org/10.1007/978-3-030-02950-0_4Google Scholar
Özdamar, Ş. (2018). Evciler Plütonu'nun (KB Türkiye) Petrolojisi. Kahramanmaraş Sütçü $IDmam Üniversitesi Mühendislik Bilimleri Dergisi, 21(2), 149165.CrossRefGoogle Scholar
Özdamar, Ş., Roden, M. F., Zou, H., Billor, M. Z., Hames, W., Georgiev, S., & Dunkl, I. (2021a). Petrogenesis of oligocene plutonic rocks in western Anatolia (NW Turkey): Insights from mineral and rock chemistry, Sr-Nd isotopes, and U-Pb, Ar-Ar and (U-Th)/He geochronology. Geochemistry, 81(2), 125747. https://doi.org/10.1016/j.chemer.2021.125747CrossRefGoogle Scholar
Özdamar, Ş., Zou, H., Billor, M. Z., & Hames, W. E. (2021b). Petrogenesis of mafic microgranular enclaves (MMEs) in the Oligocene-Miocene granitoid plutons from northwest Anatolia. Turkey. Geochemistry, 81(2), 125713. https://doi.org/10.1016/j.chemer.2020.125713CrossRefGoogle Scholar
Pirajno, F. (1995). Volcanic-hosted epithermal systems in northwest Turkey. South African Journal of Geology, 98(1), 1324.Google Scholar
Pirajno, F. (2012). Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist, 721 pp. Springer Science and Business Media.Google Scholar
Postgate, J. R. (1984). The Sulfate-Reducing Bacteria (2nd ed., pp. 1208). Cambridge Univ. Press.Google Scholar
Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43(1–4), 279309.CrossRefGoogle Scholar
Rye, R. O., & Alpers, C. N. (1997). The stable isotope geochemistry of jarosite (p. 28). US Department of the Interior. US Geological Survey.Google Scholar
Rye, R. O., Bethke, P. M., & Wasserman, M. D. (1992). The stable isotope geochemistry of acid sulfate alteration. Economic Geology, 87, 225255.CrossRefGoogle Scholar
Sayιn, S. A. (2007). Origin of kaolin deposits: Evidence from the Hisarcιk (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Science, 16, 7796.Google Scholar
Schoen, R., White, D. E., & Hemley, J. J. (1974). Argillization by descending acid at Steamboat Springs, Nevada. Clays and Clay Minerals, 22, 122.CrossRefGoogle Scholar
Seal, R. R., Alpers, C. N., & Rye, R. O. (2000). Stable isotope systematics of sulfate minerals. Reviews in Mineralogy and Geochemistry, 40(1), 541602.CrossRefGoogle Scholar
Seyitoğlu, G., & Scott, B. C. (1996). The cause of NS extensional tectonics in western Turkey: Tectonic escape vs back-arc spreading vs orogenic collapse. Journal of Geodynamics, 22(1–2), 145153.CrossRefGoogle Scholar
Sheppard, S. M. F., & Gilg, H. A. (1996). Stable isotope geochemistry of clay minerals. Clay Minerals, 31, 124.CrossRefGoogle Scholar
Sillitoe, R. H. (2015). Epithermal paleosurfaces. Mineralium Deposita, 50(7), 767793.CrossRefGoogle Scholar
Sillitoe, R. H., Hannington, M. D., & Thompson, J. F. (1996). High sulfidation deposits in the volcanogenic massive sulfide environment. Economic Geology, 91(1), 204212.CrossRefGoogle Scholar
Sillitoe, R. H. (1993). Gold-rich porphyry copper deposits: Geological model and exploration implications. In Kirkham, R. V., Sinclair, W. d., Thorpe, R. I., & Duke, J. M. (Eds.), Mineral Deposit Modeling: Geological Association of Canada, Special Paper (Vol. 40, pp. 465478).Google Scholar
Simon, A. C., Frank, M. R., Pettke, T., Candela, P. A., Piccoli, P. M., & Heinrich, C. A. (2005). Gold partitioning in meltvapor-brine systems. Geochimica et Cosmochimica Acta, 69(13), 33213335.CrossRefGoogle Scholar
Siyako, M., Bürkan, K. A., & Okay, A. I. (1989). Tertiary geology and hydrocarbon potential of the Biga and Gelibolu Peninsulas. Türkiye Petrol Jeologlarι Derneği Bulletin, 1(3), 183199.Google Scholar
Skinner, B. J., & Barton, P. B. Jr. (1973). Genesis of mineral deposits. Annual Review of Earth and Planetary Sciences, 1(1), 183211.CrossRefGoogle Scholar
Spell, T. L., & McDougall, I. (2003). Characterization and calibration of 40Ar/39Ar dating standards. Chemical Geology, 198, 189211.CrossRefGoogle Scholar
Staudacher, T., Jessberger, E. K., Dorfinger, D., & Kiko, J. (1978). A refined ultra-high vacuum furnace for rare gas analysis. Journal of Physics E: Scientific Instruments, 11, 781784.CrossRefGoogle Scholar
Stoffregen, R. E., & Cygan, G. L. (1990). An experimental study of Na-K exchange between alunite and aqueous sulfate solutions. American Mineralogist, 75(1–2), 209220.Google Scholar
Türkdönmez, O., & Bozcu, M. (2008). Etili (Çanakkale) güneyindeki plütonik ve volkanik kayalarιn petrografisi ve jeokimyasι. Geosound, 53, 189201.Google Scholar
Türkdönmez, O., & Bozcu, M. (2012). The geological, petrographical and engineering properties of rhyolitic tuffs (Çan Stone) in Çan-Etili Area (Çanakkale), NW Turkey: Their usage as building and covering stones. Open Journal of Geology, 2(1), 2533.CrossRefGoogle Scholar
Wade, C. E., McAvaney, S. O., & Gordon, G. A. (2014). Epithermal-style mineral textures, brecciation, veining and alteration, southern Gawler Ranges, SA. Mathematics in Engineering Science and Aerospace Journal, 74(3), 3143.Google Scholar
White, D. E., Hutchinson, R. A., & Keith, T. E. C. (1988). The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming. Geological Survey Professional Paper, 1456, 184.Google Scholar
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185187.CrossRefGoogle Scholar
Yang, M., Liang, X., Ma, L., Huang, J., He, H., & Zhu, J. (2019). Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite. Chemical Geology, 525, 210217.CrossRefGoogle Scholar
Yiğit, Ö. (2012). A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey. Ore Geology Reviews, 46, 118148.CrossRefGoogle Scholar
Yιlmaz, Y., & Karacιk, Z. (2001). Geology of the northern side of the Gulf of Edremit and its tectonic significance for the development of the Aegean grabens. Geodinamica Acta, 14(1–3), 3143.CrossRefGoogle Scholar
Zattin, M., Okay, A. I., & Cavazza, W. (2005). Fission-track evidence for late Oligocene and mid-Miocene activity along the North Anatolian Fault in south-western Thrace. Terra Nova, 17(2), 95101.CrossRefGoogle Scholar
Supplementary material: File

Ercan et al. supplementary material
Download undefined(File)
File 256.4 KB