Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-01T21:56:12.529Z Has data issue: false hasContentIssue false

Crystallochemical Study of a Population of Particles in Smectites from a Lateritic Weathering Profile

Published online by Cambridge University Press:  28 February 2024

S. Petit
Affiliation:
Laboratoire de Pétrologie de la Surface, URA CNRS 721, Université de Poitiers, 40, av. du Recteur Pineau, 86022 Poitiers Cédex, France
T. Prot
Affiliation:
Laboratoire de Pétrologie de la Surface, URA CNRS 721, Université de Poitiers, 40, av. du Recteur Pineau, 86022 Poitiers Cédex, France
A. Decarreau
Affiliation:
Laboratoire de Pétrologie de la Surface, URA CNRS 721, Université de Poitiers, 40, av. du Recteur Pineau, 86022 Poitiers Cédex, France
C. Mosser
Affiliation:
Centre de Geochimie de la Surface, LP CNRS 6251, 1 rue Blessig, 67084, Strausbourg Cedex, France
M. C. Toledo-Groke
Affiliation:
Instituto de Geosciencias, USP, CP 20899, 01498, Säo Paulo, Brazil

Abstract

In the copper deposit of Salobo 3A (Brazil), nontronite-like clay samples were found at the bottom of the weathering blanket. Samples were fractionated first by sedimentation and then by a HGMS method. From XRD data, it was found that the samples are essentially smectite with kaolinite in very small quantities. The average structural formula of the smectite, presented in the traditional manner, is:

Chemical analyses show that the smectite samples contain a population of clay particles whose chemistry ranges between a nontronite end-member and an Al-Mg beidellite end-member.

Spectroscopic studies by FTIR, Mössbauer, and ESR show that the three major octahedral cations (Al, Fe, Mg) are present in each octahedral sheet of the smectite, forming a solid solution, and that the chemical trends of the smectite clay detected at a “macroscopic” scale (associated clay particles) can also be observed at the unit cell scale.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bancroft, G. M., 1973 Mössbauer spectroscopy. An Introduction for Inorganic Chemists and Geochemists London McGraw-Hill.Google Scholar
Besson, G., Glaeser, R. and Tchoubar, C., 1983 Le césium, révélateur de structure des smectites Clay Miner 18 1119 10.1180/claymin.1983.018.1.02.CrossRefGoogle Scholar
Besson, G., Bookin, A. S., Daynyak, L. G., Rautureau, M., Tsipursky, S. I., Tchoubar, C. and Drits, V. A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites J. Appl. Crytallog 16 374383 10.1107/S0021889883010651.CrossRefGoogle Scholar
Bonnin, D., 1981 Propriétés magnétiques liées aux désordres bidimensionnels dans un silicate lamellaire ferrique: la nontronite Etude par spectrométrie Mössbauer, Résonances Magnétiques, Magnétisme ex EXAFS .Google Scholar
Bonnin, D., Calas, G., Suquet, H. and Pezerat, H., 1985 Intracrystalline distribution of Fe3+ in Garfield nontronite: A spectroscopic study Phys. Chem. Minerals 12 5564.CrossRefGoogle Scholar
Brigatti, M. F., 1983 Relationships between composition and structure in Fe-rich smectites Clay Miner 18 177186 10.1180/claymin.1983.018.2.06.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structure of Clay Minerals and Their X-Ray Identification London Mineralogical Society 10.1180/mono-5.CrossRefGoogle Scholar
Byström-Brusewitz, A. M. and Bailey, S. W., 1976 Studies on the Li test to distinguish between beidellite and montmorillonite Proc. Int. Clay Conf, Mexico City Wilmette, Illinois, U.S.A. Applied Publishing 419428.Google Scholar
Cardile, C. M., 1988 Tetrahedral Fe in smectites: A critical comment Clays & Clay Minerals 37 185188 10.1346/CCMN.1989.0370211.CrossRefGoogle Scholar
Cardile, C. M. and Johnston, J. H., 1985 Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 33 295300 10.1346/CCMN.1985.0330404.CrossRefGoogle Scholar
Cardile, C. M., Johnston, J. H. and Dickson, D. P. E., 1986 Magnetic ordering at 4.2 and 1.3 K in nontronites of different iron contents: A 57Fe Mössbauer spectroscopic study Clays & Clay Minerals 34 233238 10.1346/CCMN.1986.0340302.CrossRefGoogle Scholar
Cardile, C. M. Childs, C. W. and Whitton, J. S., 1987 The effect of citrate/bicarbonate/dithionite treatment on standard and soil smectites as evidenced by “Fe Mössbauer spectroscopy Aust. J. Soil. Res 25 145154 10.1071/SR9870145.CrossRefGoogle Scholar
Coey, J. M. D., 1980 Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy Atomic Energy Review 18 73124.Google Scholar
Coey, J M D Chukhrov, F. V. and Zvyagin, B. B., 1984 Cation distribution, Mössbauer spectra and magnetic properties of ferripyrophyllite Clays & Clay Minerals 32 198204 10.1346/CCMN.1984.0320307.CrossRefGoogle Scholar
Cracium, C., 1984 Influence of the Fe3+ for Al3+ octahedral substitutions on the IR spectra of montmorillonite minerals Spectroscopy Letters 579590.CrossRefGoogle Scholar
Daynyak, L. G. and Drits, V. A., 1987 Interpretation of Mössbauer spectra of nontronite, celadonite and glauconite Clays & Clay Minerals 35 363373 10.1346/CCMN.1987.0350506.CrossRefGoogle Scholar
Decarreau, A., Colin, F., Herbillon, A., Manceau, A., Nahon, D., Paquet, H., Trauth-Badaud, D. and Trescases, J. J., 1987 Domain segregation in Ni-Fe-Mg-smectites Clays & Clay Minerals 35 110 10.1346/CCMN.1987.0350101.CrossRefGoogle Scholar
De Endredy, A. S., 1963 Estimation of free iron oxides in soils and clays by a photolytic method Clay Miner 29 209217 10.1180/claymin.1963.005.29.07.CrossRefGoogle Scholar
Delvaux, B., Mestdagh, M. M., Vielvoye, L. and Herbillon, A. J., 1989 XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed layer kaolinite/smec-tite Clay Miner 24 617630 10.1180/claymin.1989.024.4.05.CrossRefGoogle Scholar
Drits, V. A., Plancon, A., Sakharov, B. A., Besson, G., Tsipursky, S. I. and Tchoubar, C., 1984 Diffraction effect calculated for structural models of K saturated montmorillonite containing different types of defects Clay Miner 19 541561 10.1180/claymin.1984.019.4.03.Google Scholar
Duplay, J., 1984 Analyses chimiques ponctuelles de particules d’argiles. Relation entre variations de composition dans une population de particules et température de formation Sci. Geol. Bull 37 4 307317 10.3406/sgeol.1984.1675.CrossRefGoogle Scholar
Duplay, J., Desprairies, A., Paquet, H. and Millot, G., 1986 Celadonites et glauconites: double population de particules dans la celadonite de Chypre. Essai sur les températures de formation C.R. Acad. Sci. Paris 302 181186.Google Scholar
Ericsson, T., Linares, J. and Lotse, E., 1984 A Mössbauer study of the effect of dithionite/citrate/bicarbonate treatment on a vermiculite, a smectite and a soil Clay Miner 19 8591 10.1180/claymin.1984.019.1.09.CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331365 10.1180/mono-4.15.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochim. Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Garrels, R. M., 1984 Montmorillonite/illite stability diagrams Clays & Clay Minerals 32 161166 10.1346/CCMN.1984.0320301.CrossRefGoogle Scholar
Goodman, B. A., 1978 The Mössbauer spectra of non-tronites: Consideration of an alternative assignment Clays & Clay Minerals 26 176177 10.1346/CCMN.1978.0260215.CrossRefGoogle Scholar
Goodman, B. A., Nadeau, P. H. and Chadwick, J., 1988 Evidence for the multiphase nature of bentonites from Mössbauer and EPR spectroscopy Clay Miner 23 147159 10.1180/claymin.1988.023.2.03.CrossRefGoogle Scholar
Goodman, B. A., Russel, J. D., Fraser, A. R. and Woodhams, F. W. D., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonoids in clay J. Soil Sci 4 233247 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
Güven, N., 1988 Smectites Hydrous Phillosilicates 19 497559 10.1515/9781501508998-018.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Minerals 7 223238 10.1007/BF00311893.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust des Aus-tauschfahigkeit von Lithiumionen an Bentonit durch Erhitzung Z. Anorg. Allg. Chem 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Jackson, M. L., 1958 Soil Chemical Analysis 3rd New Jersey Prentice Hall, Englewood Cliffs.Google Scholar
Johnston, J. H. and Cardile, C. M., 1985 Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectra Clays & Clay Minerals 33 2130 10.1346/CCMN.1985.0330103.CrossRefGoogle Scholar
Kerm, A. G., 1988 Etude et caractérisation des premiers stades d’hydratation d’une nontronite .Google Scholar
Luca, V., 1991 Detection of tetrahedral Fe3+ sites in nontronite and vermiculite by Mössbauer spectroscopy Clay & Clay Minerals 39 467477 10.1346/CCMN.1991.0390502.CrossRefGoogle Scholar
Luca, V. and Cardile, C. M., 1989 Improved detection of tetrahedral Fe3+ in nontronite SWa-1 through Mössbauer spectroscopy Clay Miner 24 115119 10.1180/claymin.1989.024.1.10.CrossRefGoogle Scholar
Meads, E. and Maiden, P. J., 1975 Elecctron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Miner 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Nadeau, P. H. and Bain, D. C., 1986 Composition of some smectites and diagenetic clays and implications for their origin Clays & Clay Minerals 34 455464 10.1346/CCMN.1986.0340412.CrossRefGoogle Scholar
Nadeau, P. H., Farmer, V. C., Mac Hardy, W. J. and Bain, D. C., 1985 Compositional variations of the Unterrup-stroth beidellite Amer. Miner 70 10041010.Google Scholar
Olivier, D., Vedrine, J. C. and Pezerat, H., 1975 Application de la résonance paramagnétique électronique à la localisation du Fe3+ dans les smectites Bull. Groupe franç. Argiles XXVII 159165.Google Scholar
Paquet, H., Duplay, J. and Nahon, D., 1982 Variations in the composition of phyllosilicates monoparticles in a weathering profile of ultrabasic rocks Proc. 7th Inter. Clay Conf, AIPEA, Bologna-Pavia 35 595603.Google Scholar
Paquet, H., Duplay, J., Nahon, D., Tardy, Y. and Millot, G., 1983 Analyses chimiques de particules isolées dans les populations de minéraux argileux. Passage des smectites magnésiennes trioctaédriques aux smectites ferrifères dioctaédriques au cours de l’altération des roches ultra-basiques C.R. Acad. Sci. Paris 296 699704.Google Scholar
Righi, D. and Jadault, P., 1988 Improving soil clay minerals studies by high-gradient magnetic separation Clay Miner 23 225232 10.1180/claymin.1988.023.2.09.CrossRefGoogle Scholar
Russell, J. D., Farmer, V. C. and Velde, B., 1970 Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infra-red spectra Mineral Mag 37 869879 10.1180/minmag.1970.037.292.01.CrossRefGoogle Scholar
Sherman, D. and Vergo, N., 1988 Optical (diffuse reflectance) and Mössbauer spectroscopic study of nontronite and related Fe-bearing smectites Amer. Miner 73 13461354.Google Scholar
Stubican, V. and Roy, R., 1961 Isomorphous substitution and infrared spectra of the layer lattice silicates Amer. Miner 46 3251.Google Scholar
Toledo-Groke, M. C., 1986 Intemperismo das rochas mineralizadas em cobre do Salobo 3A, Serra dos Carajas .Google Scholar
Toledo-Groke, M. C., Melfi, A. J. and Parisot, J. C., 1987 Comportamento do cobre o intemperismo das rochas xistosas cupriferas do Salobo 3A, Serra dos Carajas Geochim. Brasil 187200.Google Scholar
Toledo-Groke, M. C., Boulangé, B., Parisot, J. C. and Melfi, A. J., 1989 Altération des biotites dans les roches cuprifères de Salobo 3A, Serra dos Carajas (Brésil). I; Formation des phyllosilicates secondaires Geodynamique 4 135150.Google Scholar
Toledo-Groke, M. C., Parisot, J. C., Melfi, A. J. and Boulangé, B., 1989 Altération des biotites dans les roches cuprifères de Salobo 3A, Serra dos Carajas (Brésil). II; Association du cuivre aux phyllosilicates secondaires Geodynamique 4 151160.Google Scholar
Tsipursky, S. I. and Drits, V. A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction Clay Miner 19 177193 10.1180/claymin.1984.019.2.05.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals .Google Scholar