Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T07:56:25.764Z Has data issue: false hasContentIssue false

Diagenetic Kaolinite/Dickite (Betic Cordilleras, Spain)

Published online by Cambridge University Press:  28 February 2024

M. D. Ruiz Cruz
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, 29071, Málaga, Spain
L. Moreno Real
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, 29071, Málaga, Spain

Abstract

The lower Permo-Triassic sediments of the Maláguide Complex contain abundant dickite. Whole rocks were studied by optical microscopy, scanning electron microscopy, and X-ray powder diffraction. The 2–20 µm and < 2 µm size fractions were extracted and analyzed by scanning and transmission electron microscopy, X-ray powder diffraction, infrared spectroscopy, differential thermal analysis, and thermogravimetry.

In the coarse-grained samples, the 2–20 µm size fraction consisted of well-crystallized dickite associated with minor quantities of kaolinite, illite, quartz, and hematite. XRD patterns of the fine-grained samples and the <2 µm fractions showed the existence of well-crystallized minerals in which several reflections of dickite (11l, 02l) were absent and the 132/13$\bar 2$ reflections were shifted. These patterns suggest the presence of an intermediate member between well-crystallized dickite and well-crystallized kaolinite. Only locally high-order reflections are present at 10.5 Å and 18–22 Å. DTA and IR data agree with those from XRD.

The observed compositional and structural variations are a function of the lithology and the particle size of the sample. The sequence kaolinite → kaolinite/dickite → dickite is proposed for the development of these materials during Alpine metamorphism.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and Their Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Brindley, G. W. and Kurtossy, S. S., 1961 Quantitative determination of kaolinite by X-ray diffraction Amer. Mineral. 46 12051215.Google Scholar
Brindley, G. W. and Porter, A. R. D., 1978 Occurrence of dickite in Jamaica. Ordered and disordered varieties Am. Mineral 63 554562.Google Scholar
Brindley, G. W. and Robinson, K., 1946 Randomness in the structure of kaolinitic clay minerals Trans Faraday Soc. 42B 198205 10.1039/tf946420b198.CrossRefGoogle Scholar
Cases, J. M., Cunin, P., Grillet, Y., Poinsignon, C. and Yvon, J., 1986 Methods of analysing morphology of kaolinites: Relations between crystallographic and morphological properties Clay Miner. 21 5568 10.1180/claymin.1986.021.1.05.CrossRefGoogle Scholar
Chamley, H., 1990 Sedimentology Berlin and Heidelberg Springer-Verlag 10.1007/978-3-642-75565-1.Google Scholar
Drits, V. A. and Tchoubar, C., 1990 X-ray Diffraction by Disordered Lamellar Structures Berlin and Heidelberg Springer-Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Dunoyerde Segonzac, G., (1969) Les minéraux argileux dans la diagènese passage au métamorphism: Mém. Serv. Carte Géol. Als. Lorr. 29, 320 pp.Google Scholar
Farmer, V. C., 1974 The Infrared Spectra of Minerals London Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1964 The infrared spectra of layer silicates Spectrochim. Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Gomes, C. S. F., (1987) X-ray diffraction and infrared absorption crystallinity indices in kaolinites. Their significance, capacities and limitations: Proc. 6th Meet. European Clay Groups, Sevilla (Spain), Galân, E., Perez Rodriguez, J. L., and Comejo, J., eds., 265269.Google Scholar
Hinckley, D. N., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays & Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Islam, A. K. and Lotse, E. G., 1986 Quantitative mineralogical analysis of some Bangladesh soils with X-ray, ion exchange and selective dissolution techniques Clay Miner. 21 3142 10.1180/claymin.1986.021.1.03.CrossRefGoogle Scholar
Kantorowicz, J., 1984 Nature, origin and distribution of authigenic clay minerals from Middle Jurassic Ravenscar and Brent Group sandstones Clay Miner. 19 359375 10.1180/claymin.1984.019.3.08.CrossRefGoogle Scholar
Lombardi, G., Russell, J. D. and Keller, W. D., 1987 Compositional and structural variations in the size fractions of a sedimentary and a hydrothermal kaolin Clays & Clay Minerals 35 321335 10.1346/CCMN.1987.0350501.CrossRefGoogle Scholar
Mackenzie, R. C. and Mackenzie, R. C., 1970 Simple phyllosilicates based on gibbsite and brucite-like sheets Differential Thermal Analysis London and New York Academic Press 498537.Google Scholar
Martin Vivaldi, J. L. and Rodriguez Gallego, M., 1961 Some problems in the identification of clay minerals in mixtures by X-ray diffraction photographs. Part. I. Chlorite-kaolinite mixtures Clay Miner. 4 288292 10.1180/claymin.1961.004.26.04.CrossRefGoogle Scholar
Mitra, G. B., 1963 Structure defects in kaolinite Z. Kris-tallogr. Kristallgeom. 119 161175 10.1524/zkri.1963.119.3-4.161.CrossRefGoogle Scholar
Murray, H. H. and Lyon, S. C., 1959 Correlation of paper-coating quality with degree of perfection of kaolinite Clays & Clay Minerals 4 3140 10.1346/CCMN.1955.0040105.CrossRefGoogle Scholar
Noble, F. R., 1971 Study of disorder in kaolinite Clay Miner. 9 7181 10.1180/claymin.1971.009.1.05.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Part II. Nature and proportions of defects in natural kaolinites Clays & Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Plancon, A. and Zacharie, C., 1990 An expert system for the structural characterization of kaolinites Clay Miner. 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Prost, R., Dameme, A., Huard, E., Driard, J. and Leydecker, J. P., 1989 Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K Clays & Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Range, K. J., Range, A. and Weiss, A., 1969 Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloiste minerals 4th Int. Clay Conf., Tokyo, Vol. 1 Jerusalem Israel University Press 313.Google Scholar
Ruiz Cruz, M. D., and Puga, E., (1992) Análisis mineralógico del Permotrías del Complejo Maláguide en los alrededores de Málaga: Ref. III Congreso de Geología de España y VIII Congreso Latinoamericano de Geología, Salamanca, Vol. III, Soc. Geol. España, 329334.Google Scholar
Schultz, L. G., (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale: Geol. Surv. Prof. Paper 391–C, 31 pp.Google Scholar
Smikatz-Kloss, W., 1974 Differential Thermal Analysis. Applications and Results in Mineralogy Berlin Springer-Verlag 10.1007/978-3-642-65951-5.Google Scholar
Stoch, L., 1964 Thermal dehydroxilation of minerals of the kaolinite group Bull. Acad. Polonaise Sci. 12 173180.Google Scholar