Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-01T22:04:53.332Z Has data issue: false hasContentIssue false

Genesis of Smectites associated with a Coal Seams Succession in the Neogene Orhaneli and Keles Coal Deposits (Bursa), NW Turkey

Published online by Cambridge University Press:  01 January 2024

Hülya Erkoyun*
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26040, Eskişehir, Turkey
Selahattin Kadir
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26040, Eskişehir, Turkey
Tacit Külah
Affiliation:
Department of Geological Engineering, Kütahya Dumlupınar University, TR-43100, Kütahya, Turkey

Abstract

The Bursa-Orhaneli and Keles-Harmanalan coal deposits were developed in swampy and fluvial-lacustrine environments in western Anatolia under the E–W-trending graben zone during the Neogene. The present study aimed to determine the mineralogical and geochemical properties of clays interlayering the coal seams to define the origin of clay minerals, in particular, smectite. These deposits, comprising argillaceous sediment, marl, coal seam, mudstone, organic-rich shale, and sandstone, were deposited in a lacustrine environment accompanied by volcanogenic materials. The characteristics of sediments and their parent rocks were examined using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, palynology, and chemical analyses. The association of abundant smectite with quartz, amphibole, accessory chlorite, and a decrease in feldspar in fluvial-lacustrine sediments compared to those in the smectite accompanied by feldspar and volcanic glass and the absence of quartz and amphibole in the pyroclastic units suggest that smectite had detrital and authigenic origins. Flaky smectite shows either detrital, irregularly outlined coating and filling pores of terrigenous sediments or in situ precipitation edging resorbed feldspar and devitrified volcanic glass. Chemical analyses of the smectite-rich fraction show montmorillonite compositions with an average structural formula of: (Ca0.42Na0.25K0.08)(Al2.76Fe0.47Mg0.59Ti0.07Mn0.002)(Si7.65Al0.35)O20(OH)4.

The positive correlation of Al2O3 vs. TiO2 and K2O vs. Rb may be related to the abundant detrital input. Feldspar and biotite were replaced by illite during diagenesis.

An increase in the Ni/Co and V/(V + Ni) ratios in the altered units also suggest oxic, suboxic to anoxic conditions, under the control of a dry, warm to subtropical climate in fresh water and lakes during the Late Eocene to Middle Miocene. The slight enrichment of light rare earth elements (LREE) compared to heavy rare earth elements (HREE) with positive Eu and positive/negative Ce anomalies reflect fractional crystallization of feldspar. The δ18O and δD values of smectite and illite fractions and the wide range of δ34S isotope values (–1.5 to 15‰) for pyrite and chalcopyrite associated with coal indicate a signature of both diagenetic and partial hydrothermal origin.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun Hui Zhou.

References

Akinyemi, S. A., Adebayo, O. F., Ojo, O. A., Fadipe, O. A., & Gitari, W. M. (2013). Mineralogy and geochemical appraisal of paleo-redox indicators in Maastrichtian Outcrop shales of Mamu Formation, Anambra Basin, Nigeria. Journal Natural Sciences Research, 3, 4864.Google Scholar
Aldega, L., Cuadros, J., Laurora, A., & Rossi, A. (2009). Weathering of phlogopite to beidellite in a karstic environment. American Journal of Science, 309, 689710.CrossRefGoogle Scholar
Arslan, M., Abdioğlu, E., & Kadir, S. (2010). Mineralogy, geochemistry and origin of bentonite in Upper Cretaceous pyroclastic units of the Tirebolu area, Giresun, Northeast Turkey. Clays and Clay Minerals, 58, 120141.CrossRefGoogle Scholar
Başol, B. (2009). Büyükorhan granitoyidi kuzey kenarιnιn petrografisi ve yan kayaçlarla ilişkisi (Orhaneli batιsι, Bursa) (p. 215). MSc thesis, $IDstanbul Univ., $IDstanbul.Google Scholar
Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 3755.CrossRefGoogle Scholar
Bayraktar, C., & Altιnay, A. (1985). Balιkesir Bursa-Keles-Davutlar sahasι sondajlι linyit aramalarι (p. 179). Mineral Research and Exploration of Turkey (MTA) Report No. 7780.Google Scholar
Benda, L., Innocenti, F., Mazzuoli, R., Radicati, F., & Steffens, P. (1974). Stratigraphic and radiometric data of the Neogene in northwest Turkey (Cenozoic and Lignites in Turkey). Zeitschrift Der Deutschen Geologischen Gesellschaft, 125, 183193.CrossRefGoogle Scholar
Bilgin, Y., Aksoy, D., & Dost, E. (1988). Davutlar (Bursa-Keles) linyit sahasι değerlendirme raporu (pp. 145). Mineral Research and Exploration of Turkey (MTA) Report No. 8450.Google Scholar
Bohor, B. F., & Triplehorn, D. M. (1993). Tonsteins: Altered volcanic ash layers in coal-bearing sequences. Geological Society of America, Special Paper, 285, 144.CrossRefGoogle Scholar
Brindley, G. W. (1980). Quatitative X-Ray mineral analyses of clays. In Brindley, G. W. & Brown, G. (Eds.), Crystal Structures of Clay Minerals and their X-ray Identification (pp. 411438). Monograph 5, Mineralogical Society.CrossRefGoogle Scholar
Brownfield, M. E., Affolter, R. H., Cathcart, J. D., Johnson, S. Y., Brownfield, I. K., & Rice, C. A. (2005). Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. International Journal of Coal Geology, 63, 247275.CrossRefGoogle Scholar
Chen, B., Liu, G., Wu, D., & Sun, R. (2016). Comparative study on geochemical characterization of the Carboniferous aluminous argillites from the Huainan Coal Basin, China. Turkish Journal of Earth Sciences, 25, 274287.CrossRefGoogle Scholar
Christidis, G., & Dunham, A. C. (1993). Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks a case study from Milos Island, Greece. Clay Minerals, 28, 255273.CrossRefGoogle Scholar
Christidis, G., & Dunham, A. C. (1997). Compositional variations in smectites. Part II: Alteration of acidic precursors. A case study from Milos Island, Greece. Clay Minerals, 32, 253270.CrossRefGoogle Scholar
Clayton, R. N., & Mayeda, T. K. (1963). The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta, 27, 4352.CrossRefGoogle Scholar
Compton, J. S., Conrad, M. E., & Vennemann, T. W. (1999). Stable isotope evolution of volcanic ash layers during diagenesis of the Miocene Monterey Formation, California. Clays and Clay Minerals, 47, 8495.CrossRefGoogle Scholar
Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 17021703.CrossRefGoogle ScholarPubMed
Crowley, S. S., Stanton, R. W., & Ryer, T. A. (1989). The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Organic Geochemistry, 14, 315331.CrossRefGoogle Scholar
Cuadros, J., Caballero, E., Huertas, F. J., de Cisneros, J.C., & Huertas, F., & Linares, J. (1999). Experimental alteration of volcanic tuff: Smectite formation and effect on 18O isotope composition. Clays and Clay Minerals, 47, 769776.CrossRefGoogle Scholar
Çelik, Y., Karayiğit, A. I., Oskay, R. G., Kayseri Özer, M. S., Christanis, K., Hower, J. C., & Querol, X. (2021). A multidisciplinary study and palaeoenvironmental interpretation of middle Miocene Keles lignite (Harmancιk Basin, NW Turkey), with emphasis on syngenetic zeolite formation. International Journal of Coal Geology, 237, 133.CrossRefGoogle Scholar
Çetin, A. (1985). Harmancιk-Kozluca (Bursa-Orhaneli) dolayιnιn jeolojisi ve linyit olanaklarι (p. 35). Mineral Research and Exploration of Turkey (MTA) Report No. 7660.Google Scholar
Çifikli, M., Çiftçi, E., & Bayhan, H. (2013). Alteration of glassy volcanic rocks to Naand Ca-smectites in the Neogene basin of Manisa, western Anatolia, Turkey. Clay Minerals, 48, 513527.CrossRefGoogle Scholar
Dai, S., Graham, I. T., & Ward, C. R. (2016). A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159, 8295.CrossRefGoogle Scholar
Durand, B., & Nicaise, G. (1980). Procedures for kerogen isolation. In Durand, B. (Ed.), Kerogen insoluble organic matter from sedimentary rocks (pp. 3553).Google Scholar
Ece, Ö. I., Ekinci, B., Schroeder, P. A., Crowe, D., & Esenli, F. (2013). Origin of kaolin-alunite deposits in Simav Graben, Turkey: Timing styles of hydrothermal mineralization. Journal of Volcanology and Geothermal Research, 255, 5778.CrossRefGoogle Scholar
Erkoyun, H., Kadir, S., Külah, T., & Huggett, J. (2017). Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Seyitömer coal deposit, Kütahya, western Turkey. International Journal of Coal Geology, 172, 112133.CrossRefGoogle Scholar
Erkoyun, H., Kadir, S., & Huggett, J. (2019). Occurrence and genesis of tonsteins in the Miocene lignite, Tunçbilek Basin, Kütahya, western Turkey. International Journal of Coal Geology, 202, 4668.CrossRefGoogle Scholar
Erkut, E. (2016). Bursa Orhaneli bölgesi, Sadağ ve civarιnιn hidrojeolojisi (p. 120). MSc thesis, $IDstanbul Technical University, $IDstanbul.Google Scholar
Esenli, F., Kadir, S., & Ekinci Şans, B. (2019). Geochemistry of the zeolite-rich Miocene pyroclastic rocks from the Gördes, Demirci and Şaphane regions, west Anatolia, Turkey. Geochemistry International, 57, 11581172.CrossRefGoogle Scholar
Floyd, P. A., Winchester, J. A., & Park, R. G. (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45, 203214.CrossRefGoogle Scholar
Güven, N. (1988). Smectites. In Bailey, S. W. (Ed.), Hydrous phyllosilicates (Vol. 19, pp. 497559). Mineralogical Society of America.CrossRefGoogle Scholar
Hallberg, R. O. (1976). A geochemical method for investigation of palaeo-redox conditions in sediments. Ambio Special Report, 4, 139147.Google Scholar
Harnois, L. (1988). The CIW index: A new Chemical Index of Weathering. Sedimentary Geology, 55, 319322.CrossRefGoogle Scholar
Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Sedimentary Geology, 99, 6582.Google Scholar
Hayba, D. O., Bethke, P. M., Heald, P., & Faley, N. K. (1985). Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. Reviews in Economic Geology, 2, 129167.Google Scholar
Hosono, T., Lorphensriand, O., Onodera, S.-i, Okawa, H., Nakano, T., Yamanaka, T., Tsujimura, M., & Taniguchi, M. (2014). Different isotopic evolutionary trends of δ34S and δ18O compositions of dissolved sulfate in an aerobic deltaic aquifer system. Applied Geochemistry, 46, 3042.CrossRefGoogle Scholar
Hower, J., Eslinger, E. V., Hower, M. E., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Jiang, Y., Qian, H., & Zhou, G. (2016). Mineralogy and geochemistry of different morphological pyrite in late Permian coals. South Chin. Arabian Journal of Geosciences, 9, 118.Google Scholar
Jackson, M. L. (1956). Soil chemical analysis – advanced course (p. 894). Madison, Wisconsin, USA, published by the Author.Google Scholar
Jin, R., Feng, X., Teng, X., Nie, F., Cao, H., Hou, H., Liu, H., Miao, P., Zhao, H., Chen, L., Zhu, Q., & Zhou, X. (2020). Genesis of green sandstone/mudstone from Middle Jurassic Zhiluo Formation in the Dongsheng Uranium Orefield, Ordos Basin and its enlightenment for uranium mineralization, China. Geology, 3, 5266.Google Scholar
Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chemical Geology, 111, 111129.CrossRefGoogle Scholar
Kadir, S., Aydoğan, M. S., Elitok, Ö., & Helvacι, C. (2015). Composition and genesis of the nickel-chrome-bearing nontronite and montmorillonite in lateritized ultramafic rocks in the Muratdağι region (Uşak, western Anatolia), Turkey. Clays and Clay Minerals, 63, 163184.CrossRefGoogle Scholar
Karayiğit, A. I., Littke, R., Querol, X., Jones, T., Oskay, R. G., & Christanis, K. (2017). The Miocene coal seams in the Soma Basin (W. Turkey): Insights from coal petrography, mineralogy and geochemistry. International Journal of Coal Geology, 173, 110128.CrossRefGoogle Scholar
Konak, A. (2002). 1/500.000 Scale Geological Map of Turkey, $IDzmir. General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Kunze, G. W., & Dixon, J. B. (1986). Pretreatment for mineralogical analysis. In Klute, A. (Ed.), Methods of Soil Analysis, part 1. Physical and Mineralogical Methods (2nd ed., pp. 91100). American Society of Agronomy, Inc. and The Soil Science Society of America, Inc.Google Scholar
Lefticariu, L. (2009). Intergrated study of mercury and trace elements distribution in Illinois coal (p. 44). Final Report, Illinois Clean Coal Institute.Google Scholar
Leggo, P. J., Cocheme, J.-J., Demant, A., & Lee, W. T. (2001). The role of argillic alteration in the zeolitization of volcanic glass. Mineralogical Magazine, 65, 653663.CrossRefGoogle Scholar
Li, M. Y. H., & Zhou, M.-F. (2020). The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. American Mineralogist, 105, 92108.CrossRefGoogle Scholar
Loges, A., Wagner, T., Barth, M., Bau, M., & Göb, S., & Markl, G. (2012). Negative Ce anomalies in Mn oxides: The role of Ce+4 mobility during water-mineral interaction. Geochimica et Cosmochimica Acta, 86, 296402.CrossRefGoogle Scholar
Lyons, P. C., Whelan, J. F., & Dulong, F. T. (1989). Marine origin of pyritic sulfur in the Lower Bakerstown coal bed, Castleman coal field, Maryland (USA). International Journal of Coal Geology, 12, 329348.CrossRefGoogle Scholar
Mastalerz, M., Drobniak, A., Eble, C., Ames, P., & McLaughlin, P. (2020). Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. International Journal of Coal Geology, 231, 120.CrossRefGoogle Scholar
Moore, D. M., & Reynolds, R. C. (1989). X-Ray Diffraction and the Identification and Analysis of Clay Minerals (p. 332). Oxford University Press.Google Scholar
Motoki, A., Sichel, S. E., Vargas, T., Melo, D. P., & Motoki, K. F. (2015). Geochemical behavior trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais Da Academia Brasileira De Ciências, 87, 19591979.CrossRefGoogle ScholarPubMed
Nakoman, E. (1968). Contribution à l'étude de la microflore tertiaire des lignites de Seyitömer (Turquie). Pollen Et Spores, 10, 521556.Google Scholar
Noori, B., Ghadimvand, N. K., Movahed, B., & Yousefpour, M. (2016). Provenance and tectonic setting of Late Lower Cretaceous (Albian) Kazhdumi Formation sandstones (SW Iran). Open Journal of Geology, 6, 721739.CrossRefGoogle Scholar
Ohmoto, H., & Rye, R. O. (1979). Isotopes of sulfur and carbon. In Barnes, H. L. (Ed.), Geochemistry of hydrothermal ore deposits (pp. 509567). New York.Google Scholar
Okay, A. I., Harris, N. B. W., & Kelley, S. P. (1998). Exhumation of blueschists along a Tethyan suture in northwest Turkey. Tectonophysics, 285, 275299.CrossRefGoogle Scholar
Okay, A. I., Nobble, P. J., & Tekin, U. K. (2011). Devonian radiolarian ribbon cherts from the Karakaya Complex, NW Turkey: Implications for the Paleo-Tethyan evolution. Comptes Rendus Palevol, 10, 110.CrossRefGoogle Scholar
Oskay, R. G., Bechtel, A., & Karayiğit, A. I. (2019). Mineralogy, petrography and organic geochemistry of Miocene coal seams in the Kιnιk coalfield (Soma Basin-Western Turkey): Insights into depositional environment and palaeovegetation. International Journal of Coal Geology, 210, 122.CrossRefGoogle Scholar
Örgün, Y. (1993). Topuk-Göynükbelen (Orhaneli-Bursa) yöresi Nikel oluşumlarιnιn kökensel incelemesi (p. 216). PhD thesis, $IDstanbul Technical Univ., $IDstanbul.Google Scholar
Özaksoy, V., Elmacι, H., Özalp, S., Kara, M., & Duman, T. Y. (2018). Holocene activity of the Orhaneli Fault based on palaoseismological data, Bursa, NW Anatolia. Bulletin of the Mineral Research and Exploration, 156, 116.Google Scholar
Reinink-Smith, L. M. (1990). Mineral asssemblages of volcanic and detrital partings in Tertiary coal beds, Kenai Peninsula, Alaska. Clays and Clay Minerals, 38, 97108.CrossRefGoogle Scholar
Rivas-Sanchez, M., Alva-Valdivia, L., Arenas-Alatorre, J., Urrutia-Fucugauchi, J., Ruiz-Sandoval, M., Roberts, F. I., & Loughnan, F. C. (1989). Mineralogy and economic significance of bentonite occurrences in the upper Hunter Valley. In Proceedings of Mineralogy-Petrology Symposium, MINPET 89 (pp. 123127). Australasian Institute of Mining and Metallurgy.Google Scholar
Roche, E., & Schuler, M. (1980). Étude palynologique du Complexe de Kallo. S.G.B. Professional Paper, 178, 13.Google Scholar
Sáez, A., Inglès, M., Cabrera, L., & de las Heras, A. (2003). Tectonic-palaeoenvironmental forcing of clay-mineral assemblages in nonmarine settings: The Oligocene-Miocene As Pontes Basin (Spain). Sedimentary Geology, 159, 305324.CrossRefGoogle Scholar
Sarιfakιoğlu, E., Özen, H., & Winchester, J. A. (2009). Petrogenesis of the Refahiye ophiolite and its tectonic significance for Neotethyan ophiolites along the $IDzmir-Ankara-Erzincan suture zone. Turkish Journal of Earth Sciences, 18, 187207.Google Scholar
Scott, C., Deonarine, A., Kolker, A., Adams, M., & Holland, J. (2015). Size distribution of rare earth elements in coal ash. In World of Coal Ash Conference, Nashville, TN.Google Scholar
Selim, H. H., Tüysüz, O., & Barka, A. (2006). Güney Marmara bölümünün Neotektoniği (Neotectonics of the south Marmara sub-region). $IDTÜ Dergisi, 5, 151160 (in Turkish with English abstract).Google Scholar
Senkayi, A. L., Ming, D. W., Dixon, J. B., & Hosner, L. R. (1987). Kaolinite, opal-CT, and clinoptilolite in altered tuffs interbedded with lignite in the Jackson Group, Texas. Clays and Clay Minerals, 35, 281290.CrossRefGoogle Scholar
Sezgül Kayseri, M., & Akgün, F. (2008). Palynostratigraphic, palaeovegetational and palaeoclimatic investigations on the Miocene deposits in central Anatolia (Çorum region and Sivas basin). Turkish Journal of Earth Sciences, 17, 361403.Google Scholar
Shangguan, Y., Zhuang, X., Li, J., Li, B., Querol, X., Liu, B., Moreno, N., Yuan, W., Yang, G., & Pan, L. (2020). Geological controls on mineralogy and geochemistry of the Permian and Jurassic coals in the Shanbei Coalfield, Shaanxi Province, North China. Minerals, 10, 134.CrossRefGoogle Scholar
Sheppard, S. M. F., Nielsen, R. L., & Taylor, H. P. (1969). Oxygen and hydrogen isotope ratios of clay minerals from porphry copper deposits. Economic Geology, 64, 755777.CrossRefGoogle Scholar
Sheppard, S. M. F. (1986). Characterization and isotopic variations in natural waters. In Valley, J. W., Taylor, H. P. & O'Neil, J. R. (Eds.), Stable isotopes in high temperature geological processes reviews in mineralogy (pp. 141162).Google Scholar
Sheppard, S. M. F., & Gilg, H. A. (1996). Stable isotope geochemisty of clay minerals. Clay Minerals, 31, 124.CrossRefGoogle Scholar
Smith, J. W., & Batts, B. D. (1974). The distribution and isotopic composition of sulfur in coal. Geochimica et Cosmochimica Acta, 38, 121133.CrossRefGoogle Scholar
Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Research, 56, 329345.Google Scholar
Şengüler, $ID. (2004). Güney Marmara Bölgesi kömürleri. Jeoloji Mühendisliği Dergisi, 28, 3138.Google Scholar
Takagi, T., Koh, S. M., Song, M. S., Itoh, M., & Mogi, K. (2005). Geology and properties of the Kawasaki and Dobuyama bentonite deposits of Zao region in northeastern Japan. Clay Minerals, 40, 333350.CrossRefGoogle Scholar
Taunton, A. E., Welch, S. A., & Banfield, J. F. (2000). Microbial controls on phosphate and lantanide distributions during granite weathering and soil formation. Chemical Geology, 169, 71382.CrossRefGoogle Scholar
Taylor, S. R., & McLennan, S. M. (1985). The continental crustal: Its composition and Evolution (p. 312). Blakwell.Google Scholar
Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence. Springer-Verlag.CrossRefGoogle Scholar
Uysal, I. T. (2000). Clay-mineral authigenesis in the Late Permian coal measures, Bowen basin, Queensland, Australia. Clays and Clay Minerals, 48, 351365.CrossRefGoogle Scholar
Yiğitel, $ID., Altιnay, A., & Özcan, K. (1989). Bursa-Keles-Davutlar kömür sahasι jeoloji raporu (p. 62). Mineral Research and Exploration of Turkey (MTA) Report No. 8767.Google Scholar
Yossifova, M. G., Dimitrova, D. A., & Ivanova, R. I. (2018). Mineral and chemical composition of some claystones from the Troyanovo-3 mine. Maritsa East Lignite Basin, Bulgaria International Journal of Coal Geology, 196, 93105.CrossRefGoogle Scholar
Wheeler, A., & Götz, A. E. (2017). Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwana post-glacial coal deposits: No. 2 Coal Seam, Witbank Coalfield (South Africa). Palaeobiodiversity and Palaeoenvironments, 97, 259271.CrossRefGoogle Scholar
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wolff, J. A., Forni, F., Ellis, B. S., & Szymanowski, D. (2020). Europium and barium enrichments in compositionally zoned felsic tuffs: A smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth and Planetary Science Letters, 540, 112.CrossRefGoogle Scholar
Xiong, J., Liu, X., & Liang, L. (2015). Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 22, 530539.CrossRefGoogle Scholar
Zhao, L., Ward, C. R., French, D., & Graham, I. T. (2012). Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. International Journal of Coal Geology, 113, 94110.CrossRefGoogle Scholar
Zhao, L., Dai, S., Graham, I. T., & Wang, P. (2016). Clay mineralogy of coal-hosted Nb-Zr-REE-Ga mineralized beds from Late Permian strata, eastern Yunnan, SW China: Implications for paleotemperature and origin of the micro-quartz. Minerals, 6, 45.CrossRefGoogle Scholar
Zhao, Q., Niu, Y., Xie, Z., Zhang, K., Zhou, J., & Arbuzov, S. I. (2020). Geochemical characteristics of elements in coal seams 41 and 42 of Heshan Coalfield, South China. Energy Exploration & Exploitation, 38, 137157.CrossRefGoogle Scholar
Zou, J., Tian, H., & Li, T. (2016). Geochemistry and Mineralogy of Tuff in Zhongliangshan Mine, Chongqing. Southwestern China Minerals, 6, 47.Google Scholar
Zielinski, R. A. (1983). The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colarado, U.S.A. Chemical Geology, 35, 185204.CrossRefGoogle Scholar