Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-18T07:49:46.922Z Has data issue: false hasContentIssue false

High-Charge Smectite in Spanish “Raña” Soils

Published online by Cambridge University Press:  02 April 2024

Francisco José Aragoneses
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Serrano 115 Ddo., 28006-Madrid, Spain
Maria Teresa García-González
Affiliation:
Centro de Ciencias Medioambientales, CSIC, Serrano 115 Ddo., 28006-Madrid, Spain

Abstract

In a study of “rana” soils of central Spain, hydroxy-interlayered 2:1 clay minerals were identified in the upper horizons and high-charge smectite in the lower horizons, with kaolinite the most abundant phyllosilicate. The high-charge smectite showed a basal spacing of 18 Å on Mg-saturation and glycerol solvation and 10 Å on K-saturation and air-drying. It is concentrated in the coarse fractions and appears to be basically a beidellite in the fine-silt fractions and a montmorillonite in the clay fractions. Pre-existing illite was probably transformed into hydroxy-interlayered 2:1 clays in the surface horizons, whereas high-charge smectite formed in the deeper horizons. These minerals, which were apparently not stable in the existing soil conditions, were the first stage in the degradation process of illite. The stable mineral in these soil profiles was kaolinite.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

April, R. H., Hluchy, M. M. and Newton, R. M., 1986 The nature of vermiculite in Adirondack soils and till Clays & Clay Minerals 34 549556.CrossRefGoogle Scholar
Aragoneses, F. J., 1990 Geoquimica y mineralogia de las fracciones finas de suelos tipo Rana en la provincia de Guadalajara Madrid, Spain Univ. Autònoma.Google Scholar
Badraoui, M., Bloom, P. R. and Rust, R. H., 1987 Occurrence of high-charge beidellite in a vertic Haplaquoll of northwestern Minnesota Soil Sci. Soc. Amer. J. 51 813818.CrossRefGoogle Scholar
Barnhisel, R. I., Bertsch, P. M., Dixon, J. B. and Weed, S. B., 1989 Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments Madison, Wisconsin Soil Sci. Soc. Amer. 729788.Google Scholar
Biscaye, P. E., 1965 Mineralogy and sedimentation of Recent deep sea clay in the Atlantic ocean and adjacent seas and oceans Geol. Soc. Amer. Bull. 76 803832.CrossRefGoogle Scholar
Bray, R. M., 1937 Chemical and physical changes in soil colloids with advancing development in Illinois soils Sod Sci. 43 115.Google Scholar
Chen, C. C., Turner, F. T. and Dixon, J. B., 1989 Ammonium fixation by high-charge smectite in selected Texas Gulf coast soils Soil Sci. Soc. Amer. J. 53 10351040.CrossRefGoogle Scholar
Egashira, K., Dixon, J. B., Hossner, L. R., van Olphen, H. and Veniale, F., 1982 High charge smectite from lignite overburden of east Texas Proc. Int. Clay Conf., Bologna and Pavia, 1981 Amsterdam Elsevier 335345.Google Scholar
Egashira, K. and Tsuda, S., 1983 High-charge smectite found in weathered granitic rocks of Kyushu Clay Sci. 6 6771.Google Scholar
Espejo, R., 1985 The ages and soils of two levels of “Raña” surfaces in Central Spain Geoderma 35 223239.CrossRefGoogle Scholar
Espejo, R., 1987 The soils and ages of the “Raña” surfaces related to the Villuercas and Altamira mountain ranges (western Spain) Catena 14 399418.CrossRefGoogle Scholar
Fanning, D. S., Keramidas, V. Z., El-Desoky, M. A., Dixon, J. B. and Weed, S. B., 1989 Micas Minerals in Soil Environments Madison, Wisconsin Soil Sci. Soc. Amer. 551634.Google Scholar
Farmer, V. C., Smith, B. F. L. Wilson, M. J., Loveland, P. J. and Payton, R.W., 1988 Readily-extractable hydroxy-aluminium interlayers in clay- and silt-sized vermiculite Clay Miner. 23 271277.CrossRefGoogle Scholar
Follett, E. A. C. McHardy, W. S., Mitchell, B. D. and Smith, B. F. L., 1965 Chemical dissolution techniques in the study of soil clays Clay Miner. Bull. 6 2324.CrossRefGoogle Scholar
Garcia-Gonzalez, M. T., Aragoneses, F. J. and Roquero, C., 1988 Relation entre la mineralogia y el tamano de particula en suelos sobre formaciones pliocuaternarias en el area de Membrillera (Guadalajara) Segundo Congr. Nac. Cien-cia delSuelo, Sevilla, Spain, 1988 Spain Madrid 529534.Google Scholar
Garcia-Gonzalez, M. T. and Aragoneses, F. J., 1990 Parag-onite in Spanish “Raña” soils J. Soil Sci. 41 313323.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonitoids in clays J. Soil Sci. 4 233237.CrossRefGoogle Scholar
Harward, M. E., Carstea, D. D. and Sayegh, A. M., 1969 Properties of vermiculites and smectites: Expansion and collapse clays Clay Miner. 16 437447.CrossRefGoogle Scholar
Hofmann, V. U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithium-ionen an Bentonit durch Erhitzung Z. Anorg. Chem. 262 9599.CrossRefGoogle Scholar
Huff, W. D., 1972 Morphological effects on illite as a result of pottassium depletion Clays & Clay Minerals 20 295301.CrossRefGoogle Scholar
Kittrick, J. A., 1973 Mica-derived vermiculites as unstable intermediates Clays & Clay Minerals 21 479488.CrossRefGoogle Scholar
Koppi, A. J., Skjemstad, J. O., Page, D. W. and Cockayne, DJ H, 1987 Size and charge characteristics of kaolinitic soils in SE Queensland J. Soil Sci. 38 395404.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958 New York Pergamon Press 317327.Google Scholar
Nash, V. E., 1979 Mineralogy of soils developed on Pliocene-Pleistocene terraces of the Tombigbee river in Mississippi Soil Sci. Soc. Amer. J. 43 616623.CrossRefGoogle Scholar
Özkan, A. I. and Ross, G. J., 1979 Ferruginous beidellites in Turkish soils Soil Sci. Soc. Amer. J. 43 12421248.CrossRefGoogle Scholar
Robert, M., 1973 The experimental transformation of mica toward smectite; relative importance of total charge on tet-rahedral substitution Clays & Clay Minerals 21 167174.CrossRefGoogle Scholar
Robert, M., 1975 Principes de détermination qualitative des minéraux argileux a l’aide des rayons X Ann. Agron. 26 363399.Google Scholar
Robert, M., Tessier, D., Isambert, M. and Baize, D., 1974 Evolution des glauconites et illites. Contribution a la connaissance des smectites des sols Trans. 10th Intl. Congr. Soil Sci., Moscow 7 97106.Google Scholar
Rodriguez-Pascual, B., Galván, G., Galván, J., Galán, E., Perez-Rodriguez, J. L. and Cornejo, J., 1987 Mineralogical properties of soils on “raña” formations in the province of Guadalajara (Spain) Proc. 6th European Clay Groups, Sevilla, Spain, 1987 Spain Sevilla 467469.Google Scholar
Rühlicke, G. and Niederbudde, E. A., 1985 Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method Clay Miner. 20 291300.CrossRefGoogle Scholar
Sânchez-Camazano, M., Sânchez-Martin, M. J., Vicente, M. A. and Roquero, C., 1988 Caracteristicas de la fraction arcilla en los suelos de rafia al norie del Sistema Central Segundo Congr. Nac. Ciencia del Suelo, Sevilla, Spain, 1988 Spain Madrid 548553.Google Scholar
Schultz, L. G., 1964 Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale U.S. Geol. Surv. Prof. Pap. 391–C C1C31.Google Scholar
Schwertmann, U., Stucki, J. W., Goodman, B. A. and Schwertmann, U., 1988 Some properties of soil and synthetic iron oxides Iron in Soils and Clay Minerals Dordrecht, The Netherlands D. Reidel 203250.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R. and Viani, B. E., 1983 Mineralogical transformations during weathering of lignite overburden in east Texas Clays & Clay Minerals 31 4956.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R. and Kippenber-ger, L. A., 1985 Layer charge evaluation of expandable soil clays by an alkylammonium method Soil Sci. Soc. Amer. J. 49 10541060.CrossRefGoogle Scholar
Smith, B. F. L. Mitchell, B. D. and Wilson, M. J., 1989 Characterization of poorly ordered minerals by selective chemical methods A Handbook of Determinative Methods in Clay Mineralogy United Kingdom Blackie, Glassworth 275294.Google Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays & Clay Minerals 28 401411.CrossRefGoogle Scholar
Srodon, J., Eberl, D. D. and Bailey, S. W., 1984 Illite Micas, Reviews in Minerology, 13 Washington, D.C. Mineralogical Soc. Amer. 495544.Google Scholar
Stoch, L. and Sikora, W., 1976 Transformations of micas in the process of kaolinitization of granites and gneisses Clays & Clay Minerals 24 156162.CrossRefGoogle Scholar
Tributh, H., Boguslawski, E. V., Lieres, A. V., Steffens, D. and Mengel, K., 1987 Effect of potassium removal by crops on transformation of illitic clay minerals Soil Sci. 143 404409.CrossRefGoogle Scholar
Tsipurski, S. L. and Drits, V. A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction Clay Miner. 19 177193.CrossRefGoogle Scholar
USDA, 1975 Soil Taxonomy: Agricultural Handbook, No. 436 Washington, D.C. U.S. Gov. Print. Office.Google Scholar
Vicente, M. A., Molina, E., Garcia-Rodriguez, M. P. and Hartge, K. H., 1986 Minerological study of the <2 μm clay fraction of rana type soils of the northern Meseta (Spain) Trans. 13th Congr. Int. Soc. Soil Sci., Hamburg, 1986 Wageningen Int. Soc. Soil Sci. 14901491.Google Scholar