Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T07:17:14.865Z Has data issue: false hasContentIssue false

Naturally-Occurring Silicates as Carriers for Copper Catalysts used in Methanol Conversion

Published online by Cambridge University Press:  28 February 2024

M. R. Sun Kou
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Campus UAM, Cantoblanco, 28049 Madrid, Spain
S. Mendioroz
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Campus UAM, Cantoblanco, 28049 Madrid, Spain
J. L. G. Fierro
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Campus UAM, Cantoblanco, 28049 Madrid, Spain
I. Rodriguez-Ramos
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Campus UAM, Cantoblanco, 28049 Madrid, Spain
J. M. Palacios
Affiliation:
Instituto de Catálisis y Petroleoquímica, C.S.I.C. Campus UAM, Cantoblanco, 28049 Madrid, Spain
A. Guerrero-Ruiz
Affiliation:
Departamento de Química Inorgánica, UNED, Senda del Rey, s/n, 28028 Madrid, Spain
A. M. De Andres
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C, Serrano 119, 28006 Madrid, Spain

Abstract

Bentonite- and sepiolite-supported copper catalysts have been prepared either by adsorption of Cu(II) from aqueous solutions of copper nitrate at pH ~4.5 or by adsorption of a [Cu(NH3)4]2+ complex from an ammonia solution of CuSO4 at pH ~9.5. The structure and composition of the calcined preparations have been studied by X-ray diffraction, chemical analysis, and energy dispersive X-rays. Textural characteristics have derived from the analysis of the adsorption-desorption isotherms of N2. All catalysts have been tested for the dehydrogenation of methanol to methyl formate. For this reaction, bentonite-based catalysts were found to have very little activity, which indicates that copper located in the inter-lamellar spaces is inaccessible to methanol molecules. On the contrary, copper-sepiolite catalysts showed a very high specific activity even for those catalysts with a very low copper content. The chemical state of copper in the catalysts on-stream has been revealed by X-ray photoelectron spectroscopy and X-ray-induced Auger techniques. In most of the catalysts Cu+ is the dominant copper species.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, M., The reaction of formaldehyde on various metal oxide catalysts J. Catal. 1983 83 141150 10.1016/0021-9517(83)90037-4.CrossRefGoogle Scholar
de Boer, J. H., The Structure and Properties of Porous Materials 1958 London Butterworths 68.Google Scholar
Calkins, W. N., Chemicals from methanol Catal. Rev. Sci. Eng. 1984 26 347358 10.1080/01614948408064717.CrossRefGoogle Scholar
Cant, N. W., Tonner, S. P., Trimm, D. L. and Wainwright, M. S., Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper based catalysts J. Catal. 1985 91 197207 10.1016/0021-9517(85)90334-3.CrossRefGoogle Scholar
Change, C. D., Hydrocarbons from methanol Catal. Rev. Sci. Eng. 1983 25 1118 10.1080/01614948308078874.CrossRefGoogle Scholar
Figueras, F., Pillared clays as catalysts Catal. Rev. Sci. Eng. 1988 30 457499 10.1080/01614948808080811.CrossRefGoogle Scholar
Gaarenston, S. W. and Winograd, N., Initial and final state effects in the ESCA spectra of cadmium and silver oxides J. Chem. Phys. 1977 67 35003506 10.1063/1.435347.CrossRefGoogle Scholar
Guerrero-Ruiz, A., Rodrigues-Ramos, I. and Fierro, J. L. G., Dehydrogenation of methanol to methyl formate over supported copper catalysts Appl. Catal. 1991 72 119137 10.1016/0166-9834(91)85033-R.CrossRefGoogle Scholar
Hirose, A., Takahashi, K., Takezawa, N. and Kobayashi, H., Steam reforming of methanol on copper-silica catalysts. Effect of copper loading and calcination temperature on the reaction Appl. Catal. 1982 4 127134 10.1016/0166-9834(82)80243-1.Google Scholar
Mendioroz, S., Pajares, J., Benito, J. and Pesquera, C., Texture evolution of montmorillonite under progressive acid treatment: Change from H3 to H2 type of hysteresis Langmuir 1987 3 676681 10.1021/la00077a017.CrossRefGoogle Scholar
Morikawa, Y., Takagi, K. and Morooka, Y., Dehydrogenation of methanol to form methyl formate over cupric ion-exchanged form of fluoro tetrasilicic mica Proc. 8th Int. Congr. Catal. 1980 5 188197.Google Scholar
Parks, G. A., The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo-complex systems Chem. Rev. 1965 65 177198 10.1021/cr60234a002.CrossRefGoogle Scholar
Pinnavaia, T. J., Intercalated clay catalysts Science 1983 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Tzou, M., Landau, S. D. and Raythatha, R. M., On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum J. Mol. Catal. 1984 27 195212 10.1016/0304-5102(84)85080-4.CrossRefGoogle Scholar
Rodriguez-Ramos, I., Guerrero-Ruiz, A., Rojas, M. L. and Fierro, J. L. G., Dehydrogenation of methanol to methyl formate over copper-containing perovskite-type oxides Appl. Catal. 1991 68 217228 10.1016/S0166-9834(00)84104-4.CrossRefGoogle Scholar
Rojas, M. L., Fierro, J L G Tejuca, L. G. and Bell, A. T., Preparation and characterization of LaMn1−xCuxO3 perovskite oxides J. Catal. 1990 124 4151 10.1016/0021-9517(90)90102-P.CrossRefGoogle Scholar
Serna, C. and Fernandez, T., Adsorción de hidrocarburos en sepiolita. II. Propiedades de superficie A nn. Quím. 1975 71 371376.Google Scholar
Sheffer, G. R. and King, T. S., Differences in the promotional effects of the group 1A elements on unsupported copper catalysts for carbon monoxide hydrogenation J. Catal. 1989 116 488497 10.1016/0021-9517(89)90115-2.CrossRefGoogle Scholar
Tonner, S. P., Trimm, D. L. and Wainwright, M. S., Dehydrogenation of methanol to methyl formate over copper catalysts Ind. Eng. Chem. Prod. Res. Dev. 1984 23 384388 10.1021/i300015a012.CrossRefGoogle Scholar