Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-04T13:08:47.178Z Has data issue: false hasContentIssue false

A New Method of Dehydration for Pure Clay Materials using Peldri II

Published online by Cambridge University Press:  28 February 2024

Jacek Wierzchoś
Affiliation:
Centro de Ciencias Medioambientales, c/ Serrano 115 Dpdo., 28006 Madrid, Spain
Carmen Ascaso
Affiliation:
Centro de Ciencias Medioambientales, c/ Serrano 115 Dpdo., 28006 Madrid, Spain
Maria Teresa Garcia-Gonzalez
Affiliation:
Centro de Ciencias Medioambientales, c/ Serrano 115 Dpdo., 28006 Madrid, Spain
Edmund Kozak
Affiliation:
Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20236 Lublin, Poland

Abstract

A new chemical, Peldri II, is evaluated as a compound for drying soft clay materials. Peldri II, a fluorocarbon (1,1-difluorotetrachloroethane), is a solid at room temperature and is a liquid above 25°C. Clay gels are embedded in Peldri II by immersing them in the liquid and allowing it to solidify. Once solidified, Peldri II will sublime, with or without vacuum, to a dry specimen, probably without introducing surface tension. Wyoming montmorillonite saturated in 10−3 M NaCl and 1 M CaCl2 solutions has been examined to compare preservation of its initial structure after Peldri II, critical point, and freeze drying techniques. Transmission electron microscopy of ultrathin sections, scanning electron microscopy, and mercury intrusion porosimetry techniques were used. No differences were detected between Peldri II and critical point drying methods. Peldri II appears to be a significant improvement as an alternative drying agent for clay materials in studies of their structural properties. It is also very convenient for drying large numbers of samples.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aylmore, L A G and Quirk, J. P., Domains and quasi-crystalline regions in clay systems Soil Sci. Soc. Am. Proc. 1971 35 652654 10.2136/sssaj1971.03615995003500040046x.Google Scholar
Ben Rhaïem, H., Pons, C. H., Tessier, D., Schultz, L. G., van Olphen, H. and Mumpton, F. A., Factors affecting the microstructure of smectites: Role of cation and history of applied stresses Proc. Int. Clay Conf., Denver, 1985. 1987 Bloomington, Indiana The Clay Minerals Society 292297.Google Scholar
Bruand, A., Tessier, D., Fedoroff, N., Bresson, L. M. and Courty, M. A., Etude de l’organisation d’un matériau argileux en microscopie: Modifications in-terrenant lors de la deshydratation Proc. VIIth Int. Working Meeting, Soil Micromorphology, Paris, 1985 1987 Paris AFES 3135.Google Scholar
Diamond, S., Pore size distributions in clays Clays & Clay Minerals 1970 18 723 10.1346/CCMN.1970.0180103.CrossRefGoogle Scholar
Gillott, J. E., Use of scanning electron microscope and Fourier methods in characterization of microfabric and texture of sediments J. Microscopy 1980 120 261277 10.1111/j.1365-2818.1980.tb04147.x.CrossRefGoogle Scholar
Greene-Kelly, R., The preparation of clay soils for determination of structure J. Soil Sci. 1973 24 277283 10.1111/j.1365-2389.1973.tb00765.x.CrossRefGoogle Scholar
Jongerius, A. and Heintzberger, G., Methods in soil micromorphology. A technique for the preparation of large thin sections Soil Survey Papers No. 10 1975 Wageningen Netherlands Soil Survey Institute 48.Google Scholar
Kennedy, J. R., Williams, R. W. and Gray, J. P., Use of Peldri II (a fluorocarbon solid at room temperature) as an alternative to critical point drying for biological tissues J. Electron Microscopy Technique 1989 11 117125 10.1002/jemt.1060110205.CrossRefGoogle ScholarPubMed
Lawrence, G. P., Measurement of pore sizes in fine-textured soils: A review of existing techniques J. Soil Sci. 1977 28 527540 10.1111/j.1365-2389.1977.tb02261.x.CrossRefGoogle Scholar
Lawrance, G. P., Payne, D. and Greenland, D. J., Pore size distribution in critical point and freeze dried aggregates from clay subsoil J. Soil Sci. 1979 30 499516 10.1111/j.1365-2389.1979.tb01004.x.CrossRefGoogle Scholar
Meryman, H. T., Physical limitations of the rapid freezing method Proc. R. Soc. Lond. Ser. B 1957 147 452459 10.1098/rspb.1957.0064.Google ScholarPubMed
Mitchell, T. K., The fabric of natural clays and its relation to engineering properties Proc. Highway Res. Board 1956 35 693713.Google Scholar
Murphy, C. P., Faster methods of liquid-phase acetone replacement of water from soils and sediments prior to resin impregnation Geoderma 1985 35 3945 10.1016/0016-7061(85)90054-0.CrossRefGoogle Scholar
Murray, R. S. and Quirk, J. P., Freeze-dried and critical-point dried clay: A comparison Soil Sci. Soc. Am. J. 1980 44 232234 10.2136/sssaj1980.03615995004400020003x.CrossRefGoogle Scholar
Murray, R. S. and Quirk, J. P., Letter to the editor. Comments on recent work with critical point dried soils J. Soil Sci. 1981 32 161164 10.1111/j.1365-2389.1981.tb01694.x.CrossRefGoogle Scholar
Norrish, K. and Rausell-Colom, J., Effect of freezing on the swelling of clay minerals Clay Miner. Bull. 1962 5 916 10.1180/claymin.1962.5.27.02.CrossRefGoogle Scholar
Sergeyev, Y. M., Grabowska-Olszewska, B., Osipov, V. I., Sokolov, V. N. and Kolomenski, Y. N., The classification of microstructures of clay soils J. Microscopy 1980 120 237260 10.1111/j.1365-2818.1980.tb04146.x.CrossRefGoogle Scholar
Spurr, A. R., A low-viscosity epoxy resin embedding medium for electron microscopv J. Ultrastr. Res. 1969 26 3143 10.1016/S0022-5320(69)90033-1.CrossRefGoogle Scholar
Sridharan, A., Altschaeffl, A. G. and Diamond, S., Pore size distribution studies J. Soil Mech. Fdns. Div. Am. Soc. Civ. Engrs. 1971 97 771787.Google Scholar
Stawinski, J., Wierzchos, J. and Garcia-Gonzalez, M. T., Influence of calcium and sodium concentration on the microstructure of bentonite and kaolin Clays & Clay Minerals 1990 38 617622 10.1346/CCMN.1990.0380607.CrossRefGoogle Scholar
Tessier, D., Fedoroff, N., Bresson, L. M. and Courty, M. A., Validite des techniques de deshydration pour l’etude de la micro-organisation des sols—Apport des matériaux argileux purs Proc. VIIth Int. Working Meeting, Soil Micromorphology, Paris, 1985 1987 Paris AFES 2329.Google Scholar
Tessier, D. and Barrier, J., Utilisation de la micros-copie électronique à balayage dans l’étude des sols. Observation de sols humides soumis à différents pF Science du Sol 1979 1 6782.Google Scholar
Tessier, D. and Quirk, J. P., Sur l’apport de la microscopie électronique dans la connaissance du gonflement de matériaux argileux: C R. Acad. Sci., Paris 1979 288 13751378.Google Scholar
Tessier, D., Pedro, G., van Olphen, H. and Veniale, F., Electron microscopy study of Na smectite fabric—Role of layer charge, salt concentration and suction parameters Proc. Int. Clay Conf., Bologna, Pavia, 1981 1982 Amsterdam Elsevier 165176.Google Scholar
Thompson, M. L., McBride, J. F. and Horton, R., Effects of drying treatments on porosity of soil materials Soil Sci. Soc. A. J. 1985 49 13601364 10.2136/sssaj1985.03615995004900060006x.CrossRefGoogle Scholar
Tovey, N. K. and Parry, R. H. G., Stress strain behaviour of soils Proc. of the Roscoe Memorial Symposium, Cambridge 1971 Henley, Oxon Foulis and Co. Ltd. 116120.Google Scholar