Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T10:57:46.884Z Has data issue: false hasContentIssue false

Pharmaco-Chemical Analysis and in Vivo Toxicity Assays of Edible Clays Mined in Nigeria and Consumed Globally

Published online by Cambridge University Press:  01 January 2024

Joy I. Odimegwu*
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Florence E. Nkemehule
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Esther Jane-Sharon Eke
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Jumoke Okunnuga
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Aminat Omolara Buhari
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Sarah Ngozichukwu Okwuegbuna
Affiliation:
Department of Pharmacognosy, Faculty of Pharmacy, College of Medicine Campus, University of Lagos, Lagos, Nigeria
Chidinma Romanda Duru
Affiliation:
University of Nigeria Teaching Hospital, Enugu, Nigeria
*
*E-mail address of corresponding author: jodimegwu@unilag.edu.ng

Abstract

Edible clays are consumed by diverse groups of people, especially of African descent, living in Africa and abroad, in a behavior known as geophagy. The clays are used topically as an emollient and drying agent and internally to control diarrhea. Scientific information concerning the chemical constituents and toxicity of edible clays is scarce. The aims of the present study, therefore, were to ascertain the chemical composition of white edible clays (WEC) and gray edible clays (GEC); to determine their toxicity profiles using analytical chemical methods; to test the acute and sub-acute toxicity of edible clays in their natural form as consumed; and to compare the raw and processed clays, and also to compare the latter to a proprietary drug known as ‘Mist kaolin’ (Moko®) which contains some clay along with other chemicals. Atomic absorption spectroscopy (AAS) and gas chromatography/mass spectrometry (GC/MS) were used to determine the elements present. White female Wistar mice and rats were used for the acute and sub-acute toxicity analyses, respectively. The results from AAS showed the presence of heavy metals and metalloids in both GEC and WEC, and the GC/MS revealed the presence of contaminants such as indomethacin and ethyl benzene, but quantities were below human toxicity levels. Doses of 100–500 mg/kg of either clay type could be harmful to the digestive system, but all of the tests revealed that edible clay is not toxic to humans unless very large amounts (500–1000 mg/kg of body weight) are consumed.

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelabu, O. S. (2012). Application and Utilization of Clay Minerals in Kaduna State (Nigeria). Clay Minerals in Nature, 10, 90.Google Scholar
Aja, A. A., & Gbohinor, J. R. (2013). Physical properties of kaolin used in soap production in Nigeria. The International Journal of Engineering and Science, 2, 1015.Google Scholar
Ali, L., Idrees, M., Ali, M., Hussain, A., Rehman, I., Ali, A., Iqbal, S. A., & Kamel, E. H. (2014). Inhibitory effect of kaolin minerals compound against hepatitis C virus in Huh-7 cell lines. BMC Res Notes 7, 247.https://doi.org/10.1186/1756-0500-7-247CrossRefGoogle ScholarPubMed
AOAC (2011). Official Methods of Analysis International. (18th ed.). Association of Official Analytical Chemists.Google Scholar
Badmus, B. S., & Olatinsu, O. B. (2009). Geophysical evaluation and chemical analysis of kaolin clay deposit of Lakiri village. Southwestern Nigeria. International Journal of Physical Sciences, 4, 592606.Google Scholar
Bisi-Johnson, M. A., Obi, C. L., & Ekosse, G. E. (2010). Microbiological and health related perspectives of geophagia: An overview. African Journal of Biotechnology, 9, 57845791.Google Scholar
Bonglaisin, J. N., Mbofung, C. M., & Lantum, D. N. (2011). Intake of lead, cadmium and mercury in kaolin-eating. Journal of Medical Sciences, 11, 267273.CrossRefGoogle Scholar
Burdock, A. G., Carabin, G. I., & Crincoli, M. C. (2009). Safety assessment of kola nut extract as a food ingredient. Food and Chemical Toxicology, 47, 17251732.CrossRefGoogle ScholarPubMed
Deloris, A., Desire, R., Lakisha, O., Kara, C., DeJuana, G., Micoya, M., Eddy, C., Rangari, M. H., Vijaya, P., Ramble, A., Kokoasse, K., & Curtis, F. (2015). The biological consequences of kaolin geophagia. Professional Agricultural Workers Journal, 2, 23.Google Scholar
van Dongen, B. E., Rijpstra, W. I. C., Philippart, C. J. M., de Leeuw, J. W., & Sinninghe Damste, J. S. (2000). Biomarkers in upper Holocene Eastern North Sea and Wadden Sea sediments. Organic Geochemistry, 31, 15331543.CrossRefGoogle Scholar
Ekosse, G. I. E. (2010). Edible clay deposits and occurrences in Africa: Geology, mineralogy and utilisation. Applied Clay Science, 50, 212236.CrossRefGoogle Scholar
Franco, F., Cecilia, J. A., & Perez–Marqueda, L. A., Perez-Rodriguez, J. L., & Gomez, C. S. F. (2007). Particle size reduction of dickite by ultrasound treatments. Effects on the structure, shape and particle size distribution. Applied Clay Science, 35, 119127.CrossRefGoogle Scholar
Gobel, A., Thomsen, A., McArdell, C., Ternes, T., & Siegrist, H. (2005). Removal of pharmaceuticals and fragrances in biological waste water treatment. Water Research, 39, 31393152.Google Scholar
Gueslin, J.P. (2005) Sémiologie des troubles du comportement alimentaire (T.C.A) de l'adolescent et de l'adulte. [Semiology of Eating Disorders in Adolescents and Adults.] Module Science, Faculté de médecine de Bobigny. https://www.yumpu.com/fr/document/view/16712557/semiologie-destroubles-du-comportement-alimentaire-tca-freeGoogle Scholar
Kmeic, I., N'Guyen, Y., Rouger, C., Beger, J. L., Lambert, D., & Hentzein, M. (2017). Factors Associated with Geophagy and Knowledge About Its Harmful Effects Among Native Sub-Saharan African, Caribbean and French Guiana HIV Patients Living in Northern France. AIDS and Behavior, 21, 36303635.CrossRefGoogle Scholar
Lichtfouse, E., Chenu, C., Baudin, F., Leblond, C., Da Silva, M., Behar, F., Derenne, S., Largeau, C., Wehrung, P., & Albrecht, P. (1998). A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: Chemical and Isotope Evidence, 28, 411415.Google Scholar
Macheka, L. R., Olowoyo, J. O., Matsela, L., & Khine, A. A. (2016). Prevalence of geophagia and its contributing factors among pregnant women at Dr. George Mukhari Academic Hospital. Pretoria. African Health Sciences, 16, 972978. https://doi.org/10.4314/ahs.v16i4.13.CrossRefGoogle ScholarPubMed
Massaro, M., Colletti, C. G., Bommarito, A., Giordano, C., Milioto, S., Noto, R., Poma, P., & Lazzara, G. (2015). Development and characterization of Co-loaded curcumin/ triazole-halloysite systems. International Journal of Pharmaceutics, 478, 476485.CrossRefGoogle Scholar
Mbaka, G., Anunobi, C., Ogunsina, S., & Osiagwu, D. (2017). Histomorphological changes in induced benign prostatic hyperplasia with exogenous testosterone and estradiol in adult male rats treated with aqueous ethanol extract of Secamone afzelii. Egyptian Journal of Basic and Applied Sciences, 4, 1521.CrossRefGoogle Scholar
Misyak, S. A., Burlaka, A. P., Golotiuk, V. V., & Lukin, S. M. P. L. (2016). Kornienko antiradical, antimetastatic and antitumor activity of kaolin preparation “Kremnevit.” Galician Medical Journal, 23, 4447.Google Scholar
Nkansah, M. A., Korankye, M., Darko, G., & Dodd, M. (2017). Heavy metal content and potential health risk of geophagic white clay from the Kumasi Metropolis in Ghana. Journal of Environmental Toxicology, 5, 2835.Google Scholar
Pessoa, G. (2005). The taste of clay: The geophagy of African women in Château Rouge district. Terrains & Travaux, 2, 177191.CrossRefGoogle Scholar
Stackelberg, P., Furlong, E., Meyer, M., Zaugg, S., Henderson, A., & Reissman, D. (2004). Persistence of pharmaceutical compounds and other organic waste water contaminants in a conventional drinking water treatment plant. Science of the Total Environment, 329, 99113.CrossRefGoogle Scholar
Tabletwise (2019). Mist kaolin solution. Retrieved 22 Oct, 2019, from https://www.tabletwise.com/nigeria/mist-kaolin-solutionGoogle Scholar
Tristan, V. E., Michael, A., Bruce, J., John, W., & Milena, F. (2003). Sorption of 17β-estradiol onto selected soil minerals. Journal of Colloid and Interface Science, 266, 3339.Google Scholar
United States Pharmacopeia (USP). (2013). National Formulary 31. (Vol. 1, pp. 151155). The United Pharmacopeial Convention.Google Scholar
Vancampenhout, K., De Vos, B., Wouters, K., Van Calster, H., Swennen, R., Buurman, P., & Deckers, J. (2010). Determinants of soil organic matter chemistry in maritime temperate forest ecosystems. Soil Biology and Biochemistry, 42, 220233.CrossRefGoogle Scholar
Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology, 29, 15251547.CrossRefGoogle ScholarPubMed
World Health Organization/International Programme (2005). Betonite, kaolin and selected clay minerals. Environmental Health Criteria 231. Retrieved from https://www.who.int/ipcs/publications/ehc/ehc_231.Google Scholar
World Health Organization, Food and Agricultural Organization of the United Nations (1999). Evaluation of certain food additives and contaminants: forty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. https://apps.who.int/iris/handle/10665/42142.Google Scholar
Yu, Z., Xiao, B., Huang, W., & Peng, P. (2004). Sorption of steroids estrogen to soils and sediments. Journal of Environmental Toxicology, 23, 531539.Google ScholarPubMed
Zhang, F. S., Xie, Y. F., Li, X. W., Wang, D. Y., Yang, L. S., & Nie, Z. Q. (2015). Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Science of the Total Environment Journal, 538, 423430.CrossRefGoogle ScholarPubMed