Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-10T06:44:52.437Z Has data issue: false hasContentIssue false

Physicochemical Properties of Montmorillonite Interlayered with Cationic Oxyaluminum Pillars

Published online by Cambridge University Press:  02 April 2024

M. L. Occelli
Affiliation:
Gulf Research & Development Company, P.O. Drawer 2038 Pittsburgh, Pennsylvania 15230
R. M. Tindwa
Affiliation:
Gulf Research & Development Company, P.O. Drawer 2038 Pittsburgh, Pennsylvania 15230

Abstract

By ion exchanging expandable clay minerals with large, cationic oxyaluminum polymers, “pillars” were introduced that permanently prop open the clay layers. On the basis of thermal, infrared spectroscopic, adsorption, and X-ray powder diffraction (XRD) analysis, the interlayering of commercial sodium bentonite with aluminum chlorohydroxide, [Al13O4(OH)24(H2O)12]+7, polymers appears to have produced an expanded clay with a surface area of 200–300 m2/g. The pillared product contained both Brönsted and Lewis acid sites. XRD and differential scanning calorimetry measurements indicated that the micropore structure of this interlayered clay is stable to 540°C. Between 540° and 760°C, the pillared clay collapsed with a corresponding decrease in surface area (to 55 m2/g) and catalytic cracking activity for a Kuwait gas oil having a 260°-426°C boiling range.

Резюме

Резюме

При помощи ионообменных расширяющихся глинистых минералов с большими катион-ными оксиалюминовыми полимерами были введены “столбы,” которые постоянно поддерживают открытыми глинистые слои. На основе данных по термическому и адсорбционному анализах, инфракрасной спектроскопии и порошковой рентгеновской диффракции (XRD), прослойка промышленного бентонита с хлоргидроокисей алюминия, [Аl13O4(OH)24(Н2O)12]+7, кажется, что полимеры образовали расширенную глину с площад поверхности 200–300 м2/г. “Столбовый” продукт содержал кислотные места Бренстеда и Льюиса. Измерения по ХRD и дифференциальной сканирующей калориметрии указывают, что микропористая структура прослойковой глины является стабильной до 540°С. [Е.С.]

Resümee

Resümee

Wenn expandierbare Tonminerale mit großen, kationischen Oxyaluminium-Polymeren ausgetauscht werden, werden “Pillars” eingebaut, die die Tonlagen permanent aufspreizen. Aufgrund thermischer und infrarotspektroskopischer, Adsorptions- und Röntgenpulverdiffraktions (XRD)-Analysen scheint die Wechsellagerung von käuflichem Na-Bentonit mit Aluminiumchlorohydroxid, [Al13O4(OH)24(H2O)12]+7, -Polymeren zur Bildung eines expandierbaren Tons zu führen, der eine Oberfläche von 200 - 300 m2/g hat. Das “Pillar”-Produkt enthielt sowohl Brönsted- als auch Lewis-Säureplätze. XRD- und differentialkalorimetrische Messungen deuteten darauf hin, daß die Struktur der Mikroporen dieser Wechsellagerungstone bis 540°C stabil ist. Zwischen 540° und 760°C brach der “Pillar”-Ton zusammen, was zu einer entsprechenden Abnahme der Oberfläche (auf 55 m2/g) führt und zu einer Abnahme der Fähigkeit zum katalytisch-en Cracken von Gasöl aus Kuwait, das einen Siedebereich zwischen 260° und 420°C hat. [U.W.]

Résumé

Résumé

Par l’échange d'ions entre des minéraux argileux expansibles et de larges polymères cationiques oxyaluminium, des “pilliers” ont été introduits qui maintiennent ouverts de manière permanente les couches argileuses. Basé sur des analyses thermiques, de spectroscopie infrarouge, d'adsorption, et de diffraction de rayons-X (XRD), le placement en couches alternatives de bentonite de sodium commerciale et de polymères chlorohydroxide d'aluminium, [Al13O4(OH)24(H2O)12]+7, semble avoir produit une argile dilatée ayant une aire de surface égale à 200–300 m2/g. Le produit à pilliers contenait à la fois des sites acides Brönsted et Lewis. Des mesures XRD et de calorimétrie differentielle ont indiqué que la structure micropore de cette argile à couches alternatives est stable jusqu'a 540°C. Entre 540° et 760°C, l'argile à pilliers s'est effondrée entraînant une diminution correspondante de l'aire de surface (à 55 m2/g) et une activité catalytique/cra-quante pour un petrole à essence du Kuwait ayant une étendue de températures d’ ébullition de 260°-426°C. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailar, J. C., 1956 The Chemistry of the Coordination Compounds .Google Scholar
Barrer, R. M., 1978 Zeolites and Clay Minerals as Sorbents and Molecular Sieves .Google Scholar
Barrett, G. P., Joyner, L. G. and Halenda, P. H., 1950 The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms J. Amer. Chem. Soc. 73 373380.CrossRefGoogle Scholar
Breck, D. W. and Townsend, R. P., 1980 Potential uses of natural and synthetic zeolites in industry The Properties and Applications of Zeolites 391422.Google Scholar
Brindley, G. W. and Sempels, R. E., 1977 Preparation and properties of some hydroxy-aluminum beidellites Clay Miner 12 229237.CrossRefGoogle Scholar
Ciapetta, F. G. and Anderson, D., 1969 Microactivity test for cracking Oil Gas J. 65 8893.Google Scholar
Denk, V. G. and Alt, J., 1952 5/6 Basic aluminum chloride and sulfate Z. Anorgan. Allg. Chemie 244269.CrossRefGoogle Scholar
Flanigen, E. M. and Rees, L. V., 1980 Molecular sieve zeolite technology— the first twenty-five years Proc. 5th Inter. Conf. Zeolites 760780.Google Scholar
Hem, J. D. and Roberson, C. E., 1967 Basic aluminum compounds U.S. Geol. Surv. Water-Supply Pap. 1827–A AlA55.Google Scholar
Hsu, P. H. and Bates, T. F., 1964 Fixation of hydroxy-aluminum polymers by vermiculite Soil Science 28 763769.CrossRefGoogle Scholar
Johansson, G., 1960 On the crystal structure of some basic aluminum salts Acta Chem. Scand. 14 769773.CrossRefGoogle Scholar
Kiviat, F. E. and Petrakis, L., 1973 Surface acidity of transition metal modified aluminas. Infrared and NMR investigation of adsorbed pyridine J. Phys. Chem. 77 12321239.CrossRefGoogle Scholar
Lahav, N., Shani, U. and Shabtai, J., 1978 Crosslinked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite Clays & Clay Minerals 26 107114.CrossRefGoogle Scholar
Loeppert, R. H., Mortland, M. M. and Pinnavaia, T. J., 1979 Synthesis and properties of heat-stable expanded smectite and vermiculite Clays & Clay Minerals 27 201208.CrossRefGoogle Scholar
Parry, E. P., 1963 An infrared study of pyridine adsorbed on acid sites. Characterization of surface acidity J. Catal. 2 371379.CrossRefGoogle Scholar
Shabtai, J., Lazar, R., Oblad, A. G., Seiyama, T. and Tanabe, K., 1980 Acidic forms of cross-linked smectites. A novel type of cracking catalysts Proc. 7th Inter. Congress Catalysis 828837.CrossRefGoogle Scholar
Svoboda, A. R., Kunze, G. W. and Bailey, S. W., 1966 Infrared study of pyridine adsorbed on montmorillonite surfaces Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966 277288.CrossRefGoogle Scholar
Treadwell, W. D. and Lien, O. T., 1931 A basic aluminum chloride Helv. Chim. Acta 14 473481.CrossRefGoogle Scholar
Vaughan, D. E. W., Lussier, R. and Rees, L. V., 1980 Preparation of molecular sieves based on pillared interlayered clays (PILC) Proc. 5th Inter. Conf. Zeolites 94101.Google Scholar
Vaughan, D. E. W., Lussier, R. and Magee, J., 1979 Pillared interlayered clay materials useful as catalysts and sorbents U.S. Patent .Google Scholar
Ward, J. W., 1968 The ratio of absorption coefficients of pyridine adsorbed on Lewis and Brönsted acid sites J. Catal. 11 271273.CrossRefGoogle Scholar
Wright, A. C., Granquist, W. T. and Kennedy, J. V., 1972 Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay J. Catal. 25 6580.CrossRefGoogle Scholar
Yamanaka, S. and Brindley, G. W., 1979 High surface area solids obtained by reaction of montmorillonite with zirconyl chloride Clays & Clay Minerals 27 119124.CrossRefGoogle Scholar