Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-27T12:18:23.531Z Has data issue: false hasContentIssue false

Polytypism of Micas. II. Classification and Abundance of MDO Polytypes

Published online by Cambridge University Press:  02 April 2024

S. Ďurovič*
Affiliation:
Institute of Inorganic Chemistry, Centre of Chemical Research, Slovak Academy of Sciences, 842 36 Bratislava, Czechoslovakia
Z. Weiss
Affiliation:
Coal Research Institute, 716 07 Ostrava-Radvanice, Czechoslovakia
K.-O. Backhaus
Affiliation:
Central Institute of Physical Chemistry, Academy of Sciences of the German Democratic Republic, 1199 Berlin-Adlershof, Rudower Chaussee 5, German Democratic Republic
*
1To whom correspondence should be sent.

Abstract

The maximum-degree-of-order (MDO) polytypes in all three mica families have been classified into two subfamilies and five homomorphous MDO groups according to their superposition structure and the YZ projection of their structure, respectively. This classification, which is closely related to the diffraction pattern of micas, can be derived directly from the fully descriptive polytype symbols and facilitates the calculation of the identification diagrams as well as the recognition of the relations of homomorphy between the three mica families. All mica structures refined so far by the least-squares method according to the present standards, are those of MDO polytypes.

Резюме

Резюме

Полотипы с максимальной степенью упорядочения (МДО-политипы), относящиеся к любому из трех семейств слюд, разделились на два суб-семейства и пять гомоморфных МДО-групп на основе суперпозиционных структур и YZ проекций их структур. Эту классификфцию, обладающую непосредственной связью с дифракционной картиной слюд, можно вывести из полных символов политипов. Классификация облегчает не только вычисление идентификационных диаграмм, но и выявляет связь гомоморфизма между политипами трех семейств слюд. Все кристаллические структуры слюд, уточненные до сих пор методом наименьших квадратов по настоящим стандартам, соответствуют МДО-политипам.

Resümee

Resümee

Die Polytypen mit maximalem Ordnungsgrad (MOG)-Polytype in allen drei Glimmerfamilien wurden in zwei Subfamilien und fünf homomorphe MOG-Gruppen eingeteilt entsprechend ihrer Superpositionstruktur und der YZ Projektion ihrer Struktur. Diese Klassifikation, die in enger Beziehung zu den Difffaktogrammen der Glimmer steht, kann direkt von den beschreibenden Polytypiesymbolen abgeleitet werden und vereinfacht die Berechnung der Identifikationsdiagramme sowie die Erkennung der Beziehungen der Homomorphie zwischen den drei Glimmerfamilien. Alle Glimmerstrukturen, die bisher durch die Methode der kleinsten Quadraten gemäß den gegenwärtigen Standard verfeinert wurden, sind die von MOG. [U.W.]

Résumé

Résumé

Les polytypes de degré d'ordre maximum (MDO) dans les trois familles de mica ont été classifiés en deux sous-familles et cinq groupes MDO homomorphes suivant leur structure de superposition et la projection YZ de leur structure, respectivement. Cette classification, qui est apparentée de façon proche au cliché de diffraction des micas, peut être dérivée directement des symboles de polytypes complètement descriptifs, et facilite le calcul des diagrmmes d'identification ainsi que la reconnaissance des relations d'homomorphie entre les trois types de micas. Toutes les structures de mica rafinées jusqu’à présent par la méthode des moindres carrés suivant les normes courantes sont celles de polytypes MDO. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backhaus, K.-O., 1983 Structure refinement of an lAf-lepidolite Crystal Res. Technol. 18 12531260.CrossRefGoogle Scholar
Backhaus, K.-O. and Ďurovič, S., 1984 Polytypism of micas. I. MDO polytypes and their derivation Clays & Clay Minerals 32 453463.CrossRefGoogle Scholar
Baronnet, A., 1975 Growth spirals and complex polytypism in micas. I. Polytypic structure generation Acta Crystallogr. A31 345355.CrossRefGoogle Scholar
Birle, J. D. and Tettenhorst, R., 1968 Refined muscovite structure Mineral. Mag. 36 883886.Google Scholar
Brown, B. E., 1978 The crystal structure of a 3 T lepidolite Amer. Mineral. 63 332336.Google Scholar
Christie, O. H. J., 1978 Three-layer monoclinic lepidolite from Tordal, Norway Amer. Mineral. 63 203204.Google Scholar
Donnay, G., Morimoto, N., Takeda, H. and Donnay, J. H. D., 1964 Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica Acta Crystallogr. 17 13691373.CrossRefGoogle Scholar
Domberger-Schiff, K., Backhaus, K.-O. and Ďurovič, S., 1982 Polytypism of micas: OD interpretation, stacking symbols, symmetry relations Clays & Clay Minerals 30 364374.CrossRefGoogle Scholar
Ďurovič, S., 1981 OD-Charakter, Polytypie und Identifikation von Schichtsilikaten Fortschr. Miner. 59 191226.Google Scholar
Ďurovič, S. and Konta, J., 1982 Ordered and disordered polytypes of sheet silicates and their diffraction pattern assuming ideal ditrigonalization of tetrahedral sheets 9th Conference on Clay Mineralogy and Petrology, Zvolen, Czechoslovakia, 1981 Prague Charles University.Google Scholar
Giuseppetti, G. and Tadini, C., 1972 The crystal structure of 20 brittle mica: anandite Tschermaks Min. Petr. Mitt. 18 169184.CrossRefGoogle Scholar
Guggenheim, S., 1981 Cation ordering in lepidolite Amer. Mineral. 66 12211232.Google Scholar
Guggenheim, S. and Bailey, S. W., 1975 Refinement of the margarite structure in subgroup symmetry Amer. Mineral. 60 10231029.Google Scholar
Guggenheim, S. and Bailey, S.W., 1977 The refinement of zinnwaldite 1M in subgroup symmetry Amer. Mineral. 62 11581167.Google Scholar
Güven, N., 1971 The crystal structure of 2M 1 phengite and 2M 1 muscovite Z. Kristallogr. 134 196212.Google Scholar
Güven, N. and Burnham, C. W., 1967 The crystal structure of 3T muscovite Z. Kristallogr. 125 163183.CrossRefGoogle Scholar
Hazen, R. M. and Burnham, C. W., 1973 The crystal structure of one-layer phlogopite and annite Amer. Mineral. 58 889900.Google Scholar
Hazen, R. M., Finger, L. W. and Velde, D., 1981 Crystal structure of a silica- and alkali-rich trioctahedral mica A mer. Mineral. 66 586591.Google Scholar
Joswig, W., 1972 Neutronenbeugungsmessungen an einem lAf-Phlogopit N. Jb. Mineral. Mh. H1 111.Google Scholar
McCauley, J. W. and Newnham, R. E., 1973 Structure refinement of a barium mica Z. Kristallogr. 137 360367.CrossRefGoogle Scholar
McCauley, J. W., Newnham, R. E. and Gibbs, G. V., 1973 Crystal structure analysis of synthetic fluorophlogopite Amer. Mineral. 58 249254.Google Scholar
Mikloš, D., 1975 Symmetry and polytypism of trioctahedral kaolin-type minerals .Google Scholar
Mikloš, D. and Grebenshchikov, R. G., 1981 Classification and identification of basic types of sheet silicates by diffraction methods Structure and Properties of Silicate and Oxide Systems Leningrad Nauka 5759.Google Scholar
Ohta, T., Takeda, H. and Takéuchi, Y., 1982 Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M 1 oxybiotite Amer. Mineral. 67 298310.Google Scholar
Pavlishin, V. I., Semenova, T. F. and Rozhdesvenskaya, I. V., 1981 Protolithionite-3 T: structure, typomorphism and practical importance Mineral. Zh. 3 4760.Google Scholar
Radoslovich, E. W., 1960 The structure of muscovite KAl2(Si3Al)O10(OH)2 Acta Crystallogr. 13 919932.CrossRefGoogle Scholar
Radoslovich, E. W., 1961 Surface symmetry and cell dimension of layer-lattice silicates Nature (London) 191 6768.CrossRefGoogle Scholar
Rayner, J. H., 1974 The crystal structure of phlogopite by neutron diffraction Mineral. Mag. 39 850856.CrossRefGoogle Scholar
Rieder, M., 1970 Lithium-iron micas from the Krušné Hory Mountains (Erzgebirge): twins, epitactic overgrowths and polytypes Z. Kristallogr. 132 161184.CrossRefGoogle Scholar
Ross, M., Takeda, H. and Wones, D. R., 1966 Mica polytypes: systematic description and identification Science 151 191193.CrossRefGoogle ScholarPubMed
Rothbauer, R., 1971 Untersuchung eines 2M 1-Muskovits mit Neutronenstrahlen N. Jb. Mineral. Mh. 4 143154.Google Scholar
Sartori, F., 1976 The crystal structure of a 2M 1 lepidolite Tschermaks Min. Petr. Mitt. 23 6575.CrossRefGoogle Scholar
Sartori, F., 1977 The crystal structure of a 2M 1 lepidolite Tschermaks Min. Petr. Mitt. 24 2337.CrossRefGoogle Scholar
Sartori, F., Franzini, M. and Merlino, S., 1973 Crystal structure of a 2M 2 lepidolite Acta Crystallogr. B29 573578.CrossRefGoogle Scholar
Semenova, T. F., Rozhdestvenskaya, I. V. and Frank-Kamenetsky, V. A., 1977 Refinement of the crystal structure of tetraferriphlogopite Kristallografiya 22 11961201.Google Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1975 Refinement of the crystal structure of dioctahedral mica 1M Kristallografiya 20 543549.Google Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1977 Refinement of the crystal structure of 2M 1 paragonite by the high-voltage electron diffraction method Kristallografiya 22 971975.Google Scholar
Sidorenko, O. V., Zvyagin, B. B. and Soboleva, S. V., 1977 Crystal structure of 3 Tparagonite Kristallografiya 22 976981.Google Scholar
Soboleva, S. V., Sidorenko, O. V. and Zvyagin, B. B., 1977 Crystal structure of paragonite 1 M Kristallografiya 22 510514.Google Scholar
Sokolova, G. V., Aleksandrova, V. A., Drits, V. A., Bairakov, V. V. and Frank-Kamenetskii, V. A., 1979 Crystal structures of two brittle lithia micas Kristallokhimiya i Struktura Mineralov Moscow Nauka 5566.Google Scholar
Steinflnk, H., 1962 Crystal structure of a trioctahedral mica: phlogopite Amer. Mineral. 47 886896.Google Scholar
Swanson, T. H. and Bailey, S. W., 1981 Redetermination of the lepidolite-2M 1, structure Clays & Clay Minerals 29 8190.CrossRefGoogle Scholar
Takeda, H., 1967 Determination of the layer stacking sequence of a new complex mica polytype: a 4-layer lithium fluorophlogopite Acta Crystallogr. 22 845853.CrossRefGoogle Scholar
Takeda, H. and Burnham, C. W., 1969 Fluor-polylithionite: a lithium mica with nearly hexagonal (Si2O5)2− ring Miner. J. 6 102109.CrossRefGoogle Scholar
Takeda, H. and Donnay, J. D. H., 1966 Trioctahedral onelayer micas. III. Crystal structure of a synthetic fluormica Acta Crystallogr. 20 638646.CrossRefGoogle Scholar
Takeda, H., Haga, N. and Sadanaga, R., 1971 Structural investigation of polymorphic transition between 2M 2-, 1M- lepidolite and 2M 1-muscovite Miner. J. 6 203215.CrossRefGoogle Scholar
Takeda, H. and Ross, M., 1975 Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M 1 biotite Amer. Mineral. 60 10301040.Google Scholar
Takéuchi, Y. and Ingerson, E., 1965 Structures of brittle micas Clays and Clay Minerals, Proc. 13th Natl. Conf., Madison, Wisconsin, 1964 New York Pergamon Press 125.Google Scholar
Takéuchi, Y. and Sadanaga, R., 1966 Structural studies of brittle micas. I. The structure of xanthophyllite refined Mineral. J. 4 424437.Google Scholar
Tateyama, H., Shimoda, S. and Sudo, T., 1974 The crystal structure of synthetic MgIV mica Z. Kristallogr. 139 196206.CrossRefGoogle Scholar
Toraya, H., Iwai, S. and Marumo, F., 1978 The crystal structure of germanate micas, KMg2.5Ge4O10F2 and KLiMg2Ge4O10F2 Z. Kristallogr. 148 6581.CrossRefGoogle Scholar
Toraya, H., Iwai, S., Marumo, F., Daimon, M. and Kondo, R., 1976 The crystal structures of tetrasilicic potassium fluor mica, KMg2.5Si4O10F2 Z. Kristallogr. 144 4252.CrossRefGoogle Scholar
Toraya, H., Iwai, S., Marumo, F. and Hirao, M., 1977 The crystal structure of taeniolite, KLiMg2Si4O10F2 Z. Kristallogr. 146 7383.CrossRefGoogle Scholar
Weiss, Z. and Ďurovič, S., 1980 OD interpretation of Mgvermiculite. Symbolism and X-ray identification of its polytypes Acta Crystallogr. A36 633640.CrossRefGoogle Scholar
Weiss, Z. and Ďurovič, S., 1983 Chlorite polytypism. Part II. Classification and X-ray identification of trioctahedral polytypes Acta Crystallogr. B39 552557.CrossRefGoogle Scholar
Weiss, Z., Ďurovič, S. and Konta, J., 1983 A unified classification and X-ray identification of polytypes of 2:1 sheet silicates Proc. Euroclay Conf., Prague, 1983 Prague Charles University.Google Scholar
Weiss, Z. and Ďurovič, S., 1984 Polytypism of pyrophyllite and talc. Part II. Classification and X-ray identification of the MDO polytypes Silikaty 28 289309.Google Scholar
Zhoukhlistov, A. P., Zvyagin, B. B., Lazarenko, E. K. and Pavlishin, V. I., 1977 Refinement of crystal structure of ferrous celadonite Kristallografiya 22 498504.Google Scholar
Zhoukhlistov, A. P., Zvyagin, B. B., Soboleva, S. V. and Fedotov, A. F., 1973 The crystal structure of the dioctahedral mica 2M 2 determined by high-voltage electron diffraction Clays & Clay Minerals 21 465470.CrossRefGoogle Scholar
Zvyagin, B. B., 1967 Electron Diffraction Analysis of Clay Mineral Structures New York Plenum Press.CrossRefGoogle Scholar
Zvyagin, B. B., Vrublevskaya, Z. V., Zhoukhlistov, A. P., Sidorenko, O. V., Soboleva, S. V. and Fedotov, A. F., 1979 High-voltage Electron Diffraction in the Investigation of Layered Minerals Moscow Nauka.Google Scholar