Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T14:32:02.633Z Has data issue: false hasContentIssue false

Structural Fe3+ in Natural Kaolinites: New Insights from Electron Paramagnetic Resonance Spectra Fitting at X and Q-Band Frequencies

Published online by Cambridge University Press:  28 February 2024

Etienne Balan
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP Case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France
Thierry Allard
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP Case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France
Bruno Boizot
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP Case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France
Guillaume Morin
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP Case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UMR 7590, CNRS, Universités Paris 6 et 7 and IPGP Case 115, 4 Place Jussieu, 75252 Paris Cedex 05, France IRD, 213 rue Lafayette, 75480 Paris Cedex 10, France

Abstract

Structural Fe3+ in kaolinites and dickites covering a broad range of disorder was investigated using electron paramagnetic resonance (EPR) spectroscopy at both the X and Q-band frequencies. A procedure based on a numerical diagonalization of the spin Hamiltonian was used to accurately determine the second and fourth-order fine-structure parameters. A least-squares fitting method was also developed to model the EPR spectra of Fe3+ ions in disordered local environments, including multimodal site-to-site distributions. Satisfactory fits between calculated and observed X and Q-band spectra were obtained regardless of the stacking order of the samples.

In well-ordered kaolinite, Fe3+ ions are equally substituted in sites of axial symmetry (Fe(II)sites, namely Fe(II)a and Fe(II)b) which were determined to be the two non-equivalent Al1 and Al2 sites of the kaolinite structure. In dickite, Fe3+ ions were also found to be equally substituted for Al3+ in the two non-equivalent Al sites of the dickite structure. In poorly ordered kaolinites, the distribution of the fine-structure parameters indicates that Fe3+ ions are distributed between Fe(II) sites and other sites with the symmetry of the dickite sites.

Hence, when stacking disorder prevails over local perturbations of the structure, the near isotropic resonance owing to Fe3+ ions in rhombically distorted sites (Fe(I) sites) is a diagnostic feature for the occurrence of C-layers in the kaolinite structure, where C refers to a specific distribution of vacant octahedral sites in successive layers.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. and Bleaney, B., 1970 Electron Paramagnetic Resonance of Transition Ions Oxford Clarendon Press.Google Scholar
Allard, T. and Müller, J.-P., 1998 Kaolinite as an in situ dosimeter for past radionuclide migration at the Earth’s surface Applied Geochemistry 13 751765 10.1016/S0883-2927(98)00011-0.CrossRefGoogle Scholar
Angel, B.R. and Vincent, W.E.J., 1978 Electron spin resonance studies of iron oxides associated with the surface of kaolins Clays and Clay Minerals 26 263272 10.1346/CCMN.1978.0260402.CrossRefGoogle Scholar
Artioli, G. Bellotto, M. Gualtieri, A. and Pavese, A., 1995 Nature of structural disorder in natural kaolinites: A new model based on computer simulation of powder diffraction data and electrostatic energy calculation Clays and Clay Minerals 43 438445 10.1346/CCMN.1995.0430407.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744 10.1346/CCMN.1993.0410613.CrossRefGoogle Scholar
Bish, D.L. and Johnston, C.T., 1993 Rietveld refinement and Fourier-transform infrared spectroscopy study of the dickite structure at low temperature Clays and Clay Minerals 41 297304 10.1346/CCMN.1993.0410304.CrossRefGoogle Scholar
Bish, D.L. and Von Dreele, R.B., 1989 Rietveld refinement of non-hydrogen atomic positions in kaolinite Clays and Clay Minerals 37 289296 10.1346/CCMN.1989.0370401.CrossRefGoogle Scholar
Bonnin, D. Muller, S. and Calas, G., 1982 Le fer dans les kaolins. Etude par spectrométries RPF., Mössbauer, EXAFS Bulletin de Minéralogie 105 467475.CrossRefGoogle Scholar
Bookin, A.S. Drits, V.A. Plançon, A. and Tchoubar, C., 1989 Stacking faults in kaolin-group minerals in the light of real structural features Clays and Clay Minerals 37 297307 10.1346/CCMN.1989.0370402.CrossRefGoogle Scholar
Brindley, G.W. Kao, C.-C. Harrison, J.L. Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Buckmaster, H.A., 1962 Tables of matrix elements for the operators O2 ±1, O4 ±1, O6 ±1, O6 ±1 Canadian Journal of Physics 40 16701677 10.1139/p62-171.CrossRefGoogle Scholar
Cases, J.-M. Liétard, O. Yvon, J. and Delon, J.-F., 1982 Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées Bulletin de Minéralogie 105 439455.CrossRefGoogle Scholar
Clozel, B. Allard, T.h. and Muller, J.-P., 1994 Nature and stability of radiation induced defects in natural kaolinites: New results and a reapraisal of published works Clays and Clay Minerals 46 657666 10.1346/CCMN.1994.0420601.CrossRefGoogle Scholar
Gaite, J.-M. and Rager, H., 1997 Electron paramagnetic resonance study of Fe3+ at M1 position in forsterite Journal of Physics: Condensed Matter 9 1003310039.Google Scholar
Gaite, J.-M. Ermakoff, P. and Muller, J.-P., 1993 Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247 10.1007/BF00208137.CrossRefGoogle Scholar
Gaite, J.-M. Ermakoff, P. Allard, T.h. and Muller, J.-P., 1997 Paramagnetic Fe3+: A sensitive probe for disorder in kaolinite Clays and Clay Minerals 45 496505 10.1346/CCMN.1997.0450402.CrossRefGoogle Scholar
Giese, R.F. Jr and Bailey, S.W., 1988 Kaolin minerals: Structures and stabilities Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 2966 10.1515/9781501508998-008.CrossRefGoogle Scholar
Goodman, B.A. Hall, P.L. and Wilson, M.J., 1994 Electron paramagnetic spectroscopy Clay Mineralogy: Spectroscopic and Chemical Determinative Methods London Chapman & Hall 173225 10.1007/978-94-011-0727-3_5.CrossRefGoogle Scholar
Hall, P.L., 1980 The application of electron spin resonance spectroscopy to studies of clay minerals: I. Isomorphous substitutions and external surface properties Clay Minerals 15 321335 10.1180/claymin.1980.015.4.01.CrossRefGoogle Scholar
Herbillon, A.J. Mestdagh, M.M. Vilelvoye, L. and Derouane, E.G., 1976 Iron in kaolinite with special reference to kaolinite from tropical soils Clay Minerals 11 201220 10.1180/claymin.1976.011.3.03.CrossRefGoogle Scholar
Kliava, J., 1986 EPR of impurity ions in disordered solids Physica Status Solidi B 134 411455 10.1002/pssb.2221340202.CrossRefGoogle Scholar
Legein, C. Buzare, J.Y. Emery, J. and Jacoboni, C., 1995 Electron paramagnetic resonance determination of the local field distribution acting on Cr3+ and Fe3+ in transition metal fluoride glasses (TMFG) Journal of Physics: Condensed Matter 7 38533862.Google Scholar
Lehmann, G., 1980 Correlation of zero-field splittings and site distorsions II. Application of the superposition model to Mn2+ and Fe3+ Physica Status Solidi B 99 623633 10.1002/pssb.2220990222.CrossRefGoogle Scholar
Levitz, P. Bonnin, D. Calas, G. and Legrand, A.P., 1980 A two-parameter distribution analysis of Mössbauer spectra in non-crystalline solids using general inversion method Journal of Physics E: Scientific Instruments 13 427432 10.1088/0022-3735/13/4/015.CrossRefGoogle Scholar
Lucas, Y. Chauvel, A. Ambrosi, J.R., Rodriguez-Clemente, R. and Tardy, Y., 1987 Processes of aluminium and iron accumulation in latosols developed on quartz rich sediments from central Amazonia (Manaus, Brazil) Proceedings of the International Meeting on Geochemistry of the Earth Surface and Processes of Mineral formation, Granada, Spain Madrid Consejo Superior de Investigaciones Cientificas 289299.Google Scholar
Malengreau, N. Muller, J.-R. and Calas, G., 1994 Fe-speciation in kaolins: A diffuse reflectance study Clays and Clay Minerals 42 137147 10.1346/CCMN.1994.0420204.CrossRefGoogle Scholar
Meads, R.E. and Maiden, P.J., 1975 Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L., 1960 Fe oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate Clays and Clay Minerals 7 317327 10.1346/CCMN.1958.0070122.CrossRefGoogle Scholar
Mestdagh, M.M. Herbillon, A.J. Rodrigue, L. and Rouxhet, P.G., 1982 Evaluation du rôle du fer structural sur la cristallinité des kaolinites Bulletin de Minéralogie 105 457466.CrossRefGoogle Scholar
Morin, G. and Bonnin, D., 1999 Modeling EPR powder spectra using numerical diagonalization of the spin Hamiltonian Journal of Magnetic Resonance 136 176199 10.1006/jmre.1998.1615.CrossRefGoogle ScholarPubMed
Muller, J.-P. Bocquier, G., Schultz, L.G. Van Olphen, H. and Mumpton, F.A., 1987 Textural and mineralogical relationships between ferruginous nodules and surrounding clayey matrices in a laterite from Cameroon Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 186196.Google Scholar
Muller, J.-P. and Calas, G., 1989 Tracing kaolinites through their defect centers. Kaolinite paragenesis in a laterite (Cameroon) Economic Geology 84 694707 10.2113/gsecongeo.84.3.694.CrossRefGoogle Scholar
Muller, J.-P. Calas, G., Murray, H.H. Bundy, W. and Harvey, C., 1993 Genetic significance of paramagnetic centers in kaolinites I Kaolin Genesis and Utilization Boulder The Clay Minerals Society.Google Scholar
Müller, J.-R. Manceau, A. Calas, G. Allard, T. Ildefonse, P. and Hazemann, J.-L., 1995 Crystal-chemistry of kaolinite and Fe-Mn oxides: Relation with formation conditions of low-temperature systems American Journal of Science 295 1151155 10.2475/ajs.295.9.1115.CrossRefGoogle Scholar
Murray, H.H. and Bailey, S.W., 1988 Kaolin minerals: Their genesis and occurrences Hydrous Phyllosilicates (Exclusive of Micas), Reviews in Mineralogy, Volume 19 6789 10.1515/9781501508998-009.CrossRefGoogle Scholar
Newman, D.J. and Urban, W., 1975 Interpretation of S-state ion spectra Advances in Physics 24 793844 10.1080/00018737500101511.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Snyder, R. Drits, V.A. and Bookin, A.S., 1989 Stacking faults in the kaolin-group minerals: The defect structure of kaolinite Clays and Clay Minerals 37 203210 10.1346/CCMN.1989.0370302.CrossRefGoogle Scholar
Prost, R. Damene, A. Huard, E. Driard, J. and Leydecker, J.P., 1989 Infrared study of structural OH in kaolinite, dickite, nacrite and poorly crystalline kaolinite at 5 to 600 K Clays and Clay Minerals 37 464468 10.1346/CCMN.1989.0370511.CrossRefGoogle Scholar
Rudowicz, C., 1985 Transformation relations for the conventional Ok q and normalized Ok q Stevens operator equivalents with k = 1 to 6 and −k ≤ q ≤ k Journal of Physics C: Solid State Physics 18 14151430 10.1088/0022-3719/18/7/009.CrossRefGoogle Scholar