Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-12T11:50:12.337Z Has data issue: false hasContentIssue false

Synthesis of Carbon-Hydrotalcite Complex and Its Thermal Degradation Behavior

Published online by Cambridge University Press:  28 February 2024

Toshiyuki Hibino
Affiliation:
Materials Processing Department, National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, 305 Japan
Katsunori Kosuge
Affiliation:
Materials Processing Department, National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, 305 Japan
Atsumu Tsunashima
Affiliation:
Materials Processing Department, National Institute for Resources and Environment, 16-3 Onogawa, Tsukuba, 305 Japan

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1996, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Giannelis, E.P., Nocera, D.G. and Pinnavaia, T.J.. 1987. Anionic photocatalysts supported in layered double hydroxides: Intercalation and photophysical properties of a ruthenium complex anion in synthetic hydrotalcite. Inorg Chem 26: 203205.CrossRefGoogle Scholar
Hibino, T., Yamashita, Y., Kosuge, K. and Tsunashima, A.. 1995. Decarbonation behavior of Mg-Al-CO3 hydrotalcite-like compounds during heat treatment. Clays & Clay Miner 43: 427432.CrossRefGoogle Scholar
Hudson, M.J., Carlino, S. and Apperley, D.C.. 1995. Thermal conversion of layered (Mg/Al) double hydroxide to the oxide. J Mater Chem 5: 323329.CrossRefGoogle Scholar
Itaya, K., Chang, H.C. and Uchida, I.. 1987. Anion-exchanged hydrotalcite-like-clay-modified electrodes. Inorg Chem 26: 624626.CrossRefGoogle Scholar
MacKenzie, K.J.D., Meinhold, R.H., Sherriff, B.L. and Xu, Z.. 1993. 27Al and 25Mg solid-state magic-angle spinning nuclear magnetic resonance study of hydrotalcite and its thermal decomposition sequence. J Mater Chem 3: 12631269.CrossRefGoogle Scholar
Mao, G., Tsuji, M. and Tamaura, Y.. 1993. Synthesis and CO2 adsorption features of a hydrotalcite-like compound of the Mg2+-Al3+-Fe(CN)64– system with high layer-charge density. Clays & Clay Miner 41: 731737.CrossRefGoogle Scholar
Miyata, S. and Hirose, T.. 1978. Adsorption of N2, O2, CO2 and H2 on hydrotalcite-like system: Mg2+-Al+-(Fe(CN)6)4–. Clays & Clay Miner 26: 441447.CrossRefGoogle Scholar
Oya, A., Mita, H., Tosaka, Y. and Otani, S.. 1990. Thermal degradation behavior of hydrotalcite/flavianic acid complex in nitrogen. Appl Clay Sci 5: 1322.CrossRefGoogle Scholar
Oya, A., Omata, Y. and Otani, S.. 1985. Thermal degradation behavior of montmorillonite-α-naphthylamine complex under nitrogen. J Mater Sci 20: 255260.CrossRefGoogle Scholar
Pesic, L., Salipurovic, S., Markovic, V., Vucelic, D., Kagunya, W. and Jones, W.. 1992. Thermal characteristics of a synthetic hydrotalcite-like material. J Mater Chem 2: 10691073.CrossRefGoogle Scholar
Rey, F., Fornés, V. and Rojo, J.M.. 1992. Thermal decomposition of hydrotalcites: An infrared and nuclear magnetic resonance spectroscopic study. J Chem Soc Faraday 88: 22332238.CrossRefGoogle Scholar