Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-16T00:27:23.754Z Has data issue: false hasContentIssue false

Synthesis of Magnetic Sulfonated Carbon/Fe3O4/Palygorskite Composites and Application as a Solid Acid Catalyst

Published online by Cambridge University Press:  01 January 2024

Mei Wu
Affiliation:
Faculty of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
Xingjun Yao
Affiliation:
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
Jinlong Jiang*
Affiliation:
Faculty of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
Yingnian Ji
Affiliation:
Faculty of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
Yaxi Gu
Affiliation:
Faculty of Chemical Engineering, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
Qiulin Deng
Affiliation:
School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Jing Ouyang
Affiliation:
National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai’an 223003, China

Abstract

Sulfonated carbon is a green, solid acid catalyst but its surface area, separation, and recovery after utilization need to be improved. The objective of the present study was to provide an environmentally friendly and economical method to prepare magnetic sulfonated carbon composite catalyst with a large surface area using palygorskite (Plg) as the support. A magnetic sulfonated carbon/Fe3O4/Plg composite catalyst was prepared via simultaneous calcination and sulfonation of the mixture of source, p-toluenesulfonic acid (TsOH), and Fe3O4/Plg. Fe3O4 nanoparticles and Plg nanorods were encased by a carbon layer derived from sucrose and TsOH. The composite catalyst exhibited good magnetic properties and high catalytic performance for the esterification of oleic acid with methanol. Oleic acid conversion reached 88.69% after the first catalytic cycle. Plg nanorods replaced sucrose and increased the catalyst’s surface area. The introduction of Fe3O4 nanoparticles improved further the acid content and oleic-acid conversion and achieved 70.31% after five cycles. The catalyst was recycled easily using an external magnetic field and its magnetic property remained unchanged due to the protection of the carbon layer.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Hongping He

References

Araújo Melo, D. M., Ruiz, J. A. C., Melo, M. A. F., Sobrinbo, E. V., & Martinelli, A. E. (2002). Preparation and characterization of lanthanum palygorskite clays as acid catalysts. Journal of Alloys and Compounds, 344, 352355.CrossRefGoogle Scholar
Bae, D. S., Han, K. S., Cho, S. B., & Choi, S. H. (1998). Synthesis of ultrafine Fe3O4 powder by glycothermal process. Materials Letters, 37, 255258.CrossRefGoogle Scholar
Ballotin, F. C., da Silva, M. J., Lago, R. M., & de Carvalho Teixeir, A. P. (2020). Solid acid catalysts based on sulfonated carbon nanostructures embedded in an amorphous matrix produced from bio-oil: esterification of oleic acid with methanol. Journal of Environmental Chemical Engineering, 8, 103674.CrossRefGoogle Scholar
Cui, J., Zhang, Z., & Han, F. (2020). Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science, 190, 105543.CrossRefGoogle Scholar
Dehkhoda, A. M., West, A. H., & Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel production. Applied Catalysis A: General, 382, 197204.CrossRefGoogle Scholar
Flores, K. P., Omega, J. L. O., Cabatingan, L. K., Go, A. W., Agapay, R. C., & Ju, Y. H. (2019). Simultaneously carbonized and sulfonated sugarcane bagasse as solid acid catalyst for the esterification of oleic acid with methanol. Renewable Energy, 130, 510523.CrossRefGoogle Scholar
Geng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13, 2630.CrossRefGoogle Scholar
Golden, D. C., & Dixon, J. B. (1990). Low-temperature alteration of palygorskite to smectite. Clays and Clay Minerals, 38, 401408.CrossRefGoogle Scholar
Iroh, J. O., & Williams, C. (1999). Formation of thermally stable polypyrrole-naphthalener/benzene sulfonate-carbon fiber composites by an electrochemical process. Synthetic Metals, 99, 18.CrossRefGoogle Scholar
Jiang, J., Feng, L., Gu, X., Qian, Y., Gu, Y., & Duanmu, C. S. (2012a). Synthesis of zeolite A from palygorskite via acid activation. Applied Clay Science, 55, 108113.CrossRefGoogle Scholar
Jiang, J., Xu, Y., Duanmu, C. S., Gu, X., & Chen, J. (2012b). Preparation and catalytic properties of sulfonated carbon-palygorskite solid acid catalyst. Applied Clay Science, 95, 260264.CrossRefGoogle Scholar
Jiang, J., Chen, Z., Duanmu, C. S., Gu, Y., Chen, J., & Ni, L. (2014). Economical synthesis of amorphous carbon nanotubes and SBA-15 mesoporous materials using palygorskite as a template and silica source. Materials Letters, 132, 425427.CrossRefGoogle Scholar
Kasprzak, A., Bystrzejewski, M., & Poplawska, M. (2018). Sulfonated carbon-encapsulated iron nanoparticles as an efficient magnetic nanocatalyst for highly selective synthesis of benzimidazoles. Dalton Transactions, 47, 63146322.CrossRefGoogle ScholarPubMed
Konwar, L. J., Das, R., Thakur, A. J., Salminen, E., Mäki-Arvela, P., Kumar, N., Mikkola, J. P., & Deka, D. (2014). Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil-cake waste. Journal of Molecular Catalysis A: Chemical, 388–389, 167176.CrossRefGoogle Scholar
Laohapornchaiphan, J., Smith, C. B., & Smith, S. M. (2017). One-step preparation of carbon-based solid acid catalyst from water hyacinth leaves for esterification of oleic acid and dehydration of xylose. Chemistry – An Asian Journal, 12, 31783186.CrossRefGoogle ScholarPubMed
Mansoori, Z., & Mansoori, Y. (2018). Fe3O4@SiO2-SO3H Nanoparticles: An efficient magnetically retrievable catalyst for esterification reactions. Journal of Particle Science Technology, 4, 6779.Google Scholar
Middea, A., Spinelli, L. S., Souza Junior, F. G., Neumann, R., da FM Gomes, O., Fernandes, T. L. A. P., de Lima, L. C., Barthem, V. M. T. S., & de Carvalho, F. V. (2015). Synthesis and characterization of magnetic palygorskite nanoparticles and their application on methylene blue remotion from water. Applied Surface Science, 346, 232239.CrossRefGoogle Scholar
Murray, H. H. (2000). Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207221.CrossRefGoogle Scholar
Ngaosuwan, K., Goodwin, J. G. Jr., & Prasertdham, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262269.CrossRefGoogle Scholar
Palani, A., & Pandurangan, A. (2005). Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves. Journal of Molecular Catalysis A: Chemical, 226, 129226134.CrossRefGoogle Scholar
Peng, L., Philippaerts, A., Ke, X., Noyen, J. V., Clippel, F. D., Tendeloo, G. V., Jacobs, P. A., & Sels, B. F. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150, 140146.CrossRefGoogle Scholar
Pileidis, F. D., Tabassum, M., Coutts, S., & Ttitirici, M. M. (2014). Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chinese Journal of Catalysis, 35, 929936.CrossRefGoogle Scholar
Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., & Basset, J. M. (2011). Magnetically Recoverable Nanocatalysts. Chemical Reviews, 111, 30363075.CrossRefGoogle ScholarPubMed
Rao, B. V. S. K., Chandra Mouli, K., Rambabu, N., Dalai, A. K., & Prasad, R. B. N. (2011). Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production. Catalysis Communications, 14, 2026.CrossRefGoogle Scholar
Sarkar, B., Liu, E., McClure, S., Sundaramurthy, J., Srinivasan, M., & Naidu, R. (2015). Biomass derived palygorskitecarbon nanocomposites: Synthesis, characterisation and affinity to dye compounds. Applied Clay Science, 114, 617626.CrossRefGoogle Scholar
Sejidov, F. T., Mansoori, Y., & Goodarzi, N. (2005). Esterification reaction using solid heterogeneous acid catalysts under solvent-less condition. Journal of Molecular Catalysis A: Chemical, 204, 186190.Google Scholar
Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D., & Wang, J. (2010). Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Applied Energy, 87, 25892596.CrossRefGoogle Scholar
Suárez Barrios, M., Flores González, L. V., Vicente Rodríguez, M. A., & Martín Pozas, J. M. (1995). Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Applied Clay Science, 10, 247258.CrossRefGoogle Scholar
Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2010). Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sciences, 12, 1029–1024.CrossRefGoogle Scholar
Tang, J., Mu, B., Zong, L., Zheng, M., & Wang, A. (2017). Facile and green fabrication of magnetically recyclable carboxylfunctionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment. Chemical Engineering Journal, 322, 102114.CrossRefGoogle Scholar
Tang, J., Mu, B., Zong, L., & Wang, A. (2018). One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal. Journal of Cleaner Production, 172, 673685.CrossRefGoogle Scholar
Testa, M. L., Parola, V. L., & Venezia, A. M. (2010). Esterification of acetic acid with butanol over sulfonic acidfunctionalized hybrid silicas. Catalysis Today, 158, 109113.CrossRefGoogle Scholar
Toda, M., Takagaki, A., Okamura, M., Kondo, J. N., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature, 438, 178.CrossRefGoogle ScholarPubMed
Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C. J., Goderis, B., Jacobs, P. A., & Sels, B. F. (2010). Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry, 12, 15601563.CrossRefGoogle Scholar
Wang, J., Xu, W., Ren, J., Liu, X., Lu, G., & Wang, Y. (2011). Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry, 13, 26782681.CrossRefGoogle Scholar
Wang, Y., Wang, D., Tan, M., Jiang, B., Zheng, J., Tsubaki, N., & Wu, M. (2015). Monodispersed hollow SO3H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid. ACS Applied Materials & Interfaces, 7, 2676726775.CrossRefGoogle ScholarPubMed
Wang, Y. T., Yang, X. X., Xu, J., Wang, H. L., Wang, Z. B., Zhang, L., Wang, S. L., & Liang, J. L. (2019). Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renewable Energy, 139, 688695.CrossRefGoogle Scholar
Whitney, G. (1990). Role of water in the smectite-to-illite reaction. Clay and Clay Minerals, 38, 343350.CrossRefGoogle Scholar
Xiao, H., Guo, Y., & Liang, X. (2010). One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization. Monatshefte für Chemie, 141, 929932.CrossRefGoogle Scholar
Xie, W., & Wang, H. (2021). Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel, 283, 118893.CrossRefGoogle Scholar
Xie, W., Han, Y., & Wang, H. (2018). Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renewable Energy, 125, 675681.CrossRefGoogle Scholar
Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254, 24412449.CrossRefGoogle Scholar
Yang, J., Ao, Z., Wu, H., Zhang, S., Chi, C., Hou, C., & Qian, W. (2020). Waste paper-derived magnetic carbon composite: A novel eco-friendly solid acid for the synthesis of n-butyl levulinate from furfuryl alcohol. Renewable Energy, 146, 477483.CrossRefGoogle Scholar
Zeynizadeh, B., Rahmani, S., & Tizhoush, H. (2020). The immobilized Cu nanoparticles on magnetic montmorillonite (MMT@Fe3O4@Cu): As an efficient and reusable nanocatalyst for reduction and reductive-acetylation of nitroarenes with NaBH4. Polyhedron, 175, 114201.CrossRefGoogle Scholar
Zhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16, 46494653.CrossRefGoogle Scholar
Zhang, S., Zhong, L., Yang, H., Tang, A., & Zuo, X. (2020). Magnetic carbon-coated palygorskite loaded with cobalt nanoparticles for Congo Red removal from waters. Applied Clay Science, 198, 105856.CrossRefGoogle Scholar
Zhang, J., Jiang, W., Jiang, J., Wu, M., Shi, Y., Mao, P., & Deng, Q. (2021). One-step synthesis of sulfonated carbon/palygorskite solid-acid catalyst for the esterification of oleic acid with methanol. Clay and Clay Minerals, 69, 389396.CrossRefGoogle Scholar