Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T21:48:05.363Z Has data issue: false hasContentIssue false

Transformation of 1-Aminonapththalene at the Surface of Smectite Clays

Published online by Cambridge University Press:  02 April 2024

Calvin C. Ainsworth
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, MSN K3-61, Richland, Washington 99352
Bruce D. McVeety
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, MSN K3-61, Richland, Washington 99352
Steven C. Smith
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, MSN K3-61, Richland, Washington 99352
John M. Zachara
Affiliation:
Pacific Northwest Laboratory, P.O. Box 999, MSN K3-61, Richland, Washington 99352

Abstract

One-aminonaphthalene is sorbed onto the Na-saturated smectite clays, montmorillonite and hectorite, by cation exchange. In the presence of Fe3+, either in the clay structure or on the clay surface, sorption is followed by the formation of a blue-colored complex, with the continuous disappearance of aminonaphthalene from solution and the clay surface. The rate of aminonaphthalene disappearance decreases as pH increases. With time, four major products that appear to be structural isomers of N(4-aminonaphthyl)-l-naphthylamine are produced. A simplified model of this transformation is suggested to be the oxidation by Fe3+ of sorbed aminonaphthalene forming a radical cation-clay complex. A subsequent reaction between the radical-cation and a neutral aminonaphthalene molecule takes place, with the products being strongly sorbed to the clay surface.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, C. C., Zachara, J. M. and Schmidt, R. L., 1987 Quinoline sorption of Na-montmorillonite: Contributions of the protonated and neutral species Clays & Clay Minerals 35 121128.CrossRefGoogle Scholar
Babcock, K. L. and Schulz, R. K., 1970 Isotopic and conventional determination of exchangeable sodium percentage of soil in relation to plant growth Soil Sci. 109 1922.CrossRefGoogle Scholar
Barta, R. and Pramer, D., 1967 Pesticide transformation to aniline and azo compounds in soil Science 156 16171618.CrossRefGoogle Scholar
Bollag, J.-M. Blattmann, P. and Laanio, T., 1978 Adsorption and transformation of four substituted anilines in soil J. Agric. Food Chem. 26 13021306.CrossRefGoogle Scholar
Bollag, J-M L S-Y and Deune, E. G., 1987 Transformation of 2,6-diethylaniline in soils Soil Sci. 143 5665.CrossRefGoogle Scholar
Bowen, J. M., Powers, C. R., Ratcliffe, A. E., Rockley, M. G. and Hounslow, A. W., 1988 Fourier transform infrared and Raman spectra of dimethyl methylphosphonate adsorbed on montmorillonite Environ. Sci. Technol. 22 11781181.CrossRefGoogle ScholarPubMed
Brockman, F. J., Denovan, B. A., Hicks, R. J. and Fredrickson, J. K., 1989 Isolation and characterization of quin-oline-degrading bacteria from subsurface sediments Appl. Environ. Microbiol. 55 10291032.CrossRefGoogle ScholarPubMed
Cloos, P., Moreale, A. B. C. and Badot, C., 1979 Adsorption and oxidation of aniline and p-chloroaniline by montmorillonite Clay Miner. 14 307321.CrossRefGoogle Scholar
Cloos, P. B. C. and Herbillon, A., 1981 Interlayer formation of humin in smectites Nature 298 391393.CrossRefGoogle Scholar
Fenn, D. B., Mortland, M. M. and Pinnavaia, T. J., 1973 The chemisorption of anisole on Cu(II) hectorite Clays & Clay Minerals 21 315322.CrossRefGoogle Scholar
Furukawa, T. and Brindley, G. W., 1973 Adsorption and oxidation of benzidine and aniline by montmorillonite and hectorite Clays & Clay Minerals 21 279288.CrossRefGoogle Scholar
Graveel, J. G., Summers, L. E. and Nelson, D. W., 1985 Sites of benzidine, 1-napthylamine and p-toluidine retention in soils Environ. Toxicol. Chem. 4 607613.Google Scholar
Hauser, C. R. and Leggett, M. B., 1941 Color reactions between clays and amines J. Am. Chem. Soc. 62 18111814.CrossRefGoogle Scholar
Hsu, T. S. and Barta, R., 1974 Interaction of pesticide-derived chloroaniline residues with soil organic matter Soil Sci. 116 444452.CrossRefGoogle Scholar
McBride, M. B., 1979 Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation of benzidine Clays & Clay Minerals 27 224230.CrossRefGoogle Scholar
Newman, A. C. D. Brown, G. and Newman, A. C. D., 1987 The chemical constitution of Clays Chemistry of Clays and Clay Minerals New York Wiley 1128.Google Scholar
Parris, G. E., 1980 Environmental and metabolic transformations of primary aromatic amines and related compounds Residue Rev. 76 130.Google ScholarPubMed
Pillai, P., Helling, C.S. and Dragun, J., 1982 Soil-catalyzed oxidation of aniline Chemosphere 11 299317.CrossRefGoogle Scholar
Slade, P. G. and Stone, P. A., 1983 Structure of a vermic-ulite-aniline intercalata Clays & Clay Minerals 31 200206.CrossRefGoogle Scholar
Solomon, D. H., 1968 Clay minerals as electron acceptors and/or electron donors in organic reactions Clays & Clay Minerals 16 3139.CrossRefGoogle Scholar
Solomon, D. H., Loft, B. C. and Swift, J. D., 1968 Reactions catalysed by minerals-IV. The mechanism of the benzidine blue reaction on silicate minerals Clay Miner. 7 389397.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1986 The oxidative polymerization of aromatic molecules in the interlayer of montmorillonite studied by resonance Raman spectroscopy J. Contam. Hydrol. 1 95106.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1985 Reactions of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonite studied by resonance Raman spectroscopy. 2. Monosubstituted benzenes and 4-4’-di-substituted biphenyls J. Phys. Chem. 89 738742.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1984 The reaction of aromatic molecules in the interlayer of transition-metal ion-exchanged montmorillonite studied by resonance Raman spectroscopy. 1. Benzene and p-phenylenes J. Phys. Chem. 88 30343038.CrossRefGoogle Scholar
Soma, Y., Soma, M. and Harada, I., 1983 Resonance Raman spectroscopy of benzene adsorbed on Cu2+-montmo-rillonite. Formation of poly(p-phenylene) cations in the interlayer of the clay mineral Chem. Phys. Letters 99 153156.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G., Holtzclaw, K. M., Johnston, C. T. and LeVesque, C. S., 1981 Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298 K Soil Sci. Soc. Am. J. 45 10791084.CrossRefGoogle Scholar
Teenakoon, D. T. B. Thomas, J. M. and Tricker, M. J., 1974 Surface and intercalate chemistry of layer silicates. Part II. An iron-57 Mössbauer study of the role of lattice-substituted iron in the benzidene blue reaction of montmorillonite J. Chem. Soc. Dalton Trans. 20 22112215.CrossRefGoogle Scholar
Theng, B. K. G., 1974 The Chemistry of Clay-Organic Reactions London Wiley: Adam Hilger.Google Scholar
Theng, B.K.G., 1971 Mechanisms of formation of colored clay-organic complexes. A review Clay & Clay Minerals 19 383390.CrossRefGoogle Scholar
Theng, B. K. G. Greenland, D. J. and Quirk, J. P., 1967 Adsorption of alkylammonium cations by montmorillonite Clay Miner. 7 117.CrossRefGoogle Scholar
Thompson, T. D. and Moll, W. F., 1973 The oxidative power of smectites measured by hydroquinone Clays & Clay Minerals 21 337350.CrossRefGoogle Scholar
Vansant, E. F. and Yariv, S., 1977 Adsorption and oxidation of dimethylaniline by laponite J. Chem. Soc. Faraday Trans. 73 18151824.CrossRefGoogle Scholar
Voudrias, E. A., Rienhard, M., Davis, J. A. and Hayes, K. F., 1986 Abiotic organic reactions at mineral surfaces Geochemical Processes at the Mineral Surface Washington DC Amer. Chem. Soc 462487.Google Scholar
Wang, T. S. C. Li, S. W. and Ferng, Y. L., 1978 Catalytic polymerization of phenolic compounds by a latosol Soil Sci. 126 8186.CrossRefGoogle Scholar
Zachara, J. M., Ainsworth, C. C., Felice, I. J. and Resch, C. T., 1986 Quinoline sorption to subsurface materials: Role of pH and retention of the organic cation Environ. Sci. Technol. 20 620627.CrossRefGoogle ScholarPubMed