Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-09T10:09:28.172Z Has data issue: false hasContentIssue false

Examining ventral and dorsal prefrontal function in bipolar disorder: A functional magnetic resonance imaging study

Published online by Cambridge University Press:  16 April 2020

Sophia Frangou*
Affiliation:
Section of Neurobiology of Psychosis, Institute of Psychiatry, Kings College London, London, UK
Justin Kington
Affiliation:
Section of Neurobiology of Psychosis, Institute of Psychiatry, Kings College London, London, UK
Vanessa Raymont
Affiliation:
Section of Neurobiology of Psychosis, Institute of Psychiatry, Kings College London, London, UK
*
Corresponding author at: Section of Neurobiology of Psychosis, Institute of Psychiatry, PO66, De Crespigny Park, London, SE5 8AF, UK; Tel./fax: +44 207 848 0903. E-mail address: s.frangou@iop.kcl.ac.uk (S. Frangou).
Get access

Abstract

Several lines of research suggest both dorsal and ventral prefrontal cortical dysfunction in bipolar disorder (BD). We used functional magnetic resonance imaging to compare patterns of brain activation in remitted BD patients and controls whilst performing tasks selected for their relative specificity in engaging either the dorsal (n-back sequential-letter working memory task) or ventral (gambling task) PFC. Seven BD patients were selected from participants of the Maudsley Bipolar Disorder Project on the basis of clinical remission, absence of cognitive deficits, and monotherapy with mood stabilisers. Subjects were individually matched by gender, age, and IQ to an equal number of healthy controls. In the n-back task, group differences were only present in response to increasing memory load. Patients did not show the predicted dynamic response in the dorsal PFC, but had increased activation in the parietal cortices. During the gambling task, controls showed significant activation in the ventral and dorsal PFC; this was attenuated in BD patients where increased activation was seen in lateral temporal and polar regions. Our findings suggest that there are trait abnormalities in dorsal and ventral PFC function in BD that may be more pronounced during tasks that rely on ventral–dorsal PFC interaction.

Type
Original article
Copyright
Copyright © European Psychiatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baxter, L.R. Jr.Schwartz, J.M.Phelps, M.E.Mazziotta, J.C.Guze, B.H.Selin, C.E.et al.Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46:243250.CrossRefGoogle ScholarPubMed
Bechara, A.Damasio, A.R.Damasio, H.Anderson, S.W.Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994;50:715.CrossRefGoogle ScholarPubMed
Bechara, A.Damasio, H.Tranel, D.Anderson, S.W.Dissociation of working memory from decision making within the human prefrontal cortex. J Neurosci 1998;18:428437.CrossRefGoogle ScholarPubMed
Blumberg, H.P.Stern, E.Ricketts, S.Martinez, D.de Asis, J.White, T.Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999;156:19861988.Google ScholarPubMed
Blumberg, H.P.Leung, H.C.Skudlarski, P.Lacadie, C.M.Fredericks, C.A.Harris, B.C.A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003;60:601609.CrossRefGoogle ScholarPubMed
D'Esposito, M.Aguirre, G.K.Zarahn, E.Ballard, D.Shin, R.K.Lease, J.Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 1998;7:113.CrossRefGoogle ScholarPubMed
Donaldson, S.Goldstein, L.H.Landau, S.Raymont, V.Frangou, S.The Maudsley Bipolar Disorder Project: the effect of medication, family history, and duration of illness on IQ and memory in bipolar I disorder. J Clin Psychiatry 2003;64:8693.CrossRefGoogle ScholarPubMed
Elliott, R.Executive functions and their disorders. Br Med Bull 2003;65:4959.CrossRefGoogle ScholarPubMed
Ernst, M.Bolla, K.Mouratidis, M.Contoreggi, C.Matochik, J.A.Kurian, V.et al.Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 2002;26:682691.CrossRefGoogle Scholar
Fink, G.R.Markowitsch, H.J.Reinkemeier, M.Bruckbauer, T.Kessler, J.Heiss, W.D.Cerebral representation of one's own past: neural networks involved in autobiographical memory. J Neurosci 1996;16:42754282.CrossRefGoogle ScholarPubMed
Fletcher, P.C.Henson, R.N.Frontal lobes and human memory: insights from functional neuroimaging. Brain 2001;124(Pt 5):849881.CrossRefGoogle ScholarPubMed
Frangou, S.Donaldson, S.Hadjulis, M.Landau, S.Goldstein, L.H.The Maudsley Bipolar Disorder Project: executive dysfunction in bipolar disorder I and its clinical correlates. Biol Psychiatry 2005;58:859864.CrossRefGoogle ScholarPubMed
Fuster, J.M.Frontal lobe and cognitive development. J Neurocytol 2002;31:373385.CrossRefGoogle ScholarPubMed
Haldane, M.Frangou, S.New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:943960.CrossRefGoogle ScholarPubMed
Kronhaus, D.M.Lawrence, N.S.Williams, A.M.Frangou, S.Brammer, M.J.Williams, S.C.et al.Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipol Disord 2006;8:2839.CrossRefGoogle ScholarPubMed
Leon, M.I.Shadlen, M.N.Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 1999;24:415425.CrossRefGoogle ScholarPubMed
Manji, H.K.Moore, G.J.Chen, G.Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilisers. Br J Psychiatry 2001;178(Suppl 41):S107S119.CrossRefGoogle ScholarPubMed
McDermott, K.B.Buckner, R.L.Petersen, S.E.Kelley, W.M.Sanders, A.L.Set- and code-specific activation in the frontal cortex: an fMRI study of encoding and retrieval of faces and words. J Cogn Neurosci 1999;11:631640.CrossRefGoogle ScholarPubMed
Monks, P.J.Thompson, J.M.Bullmore, E.T.Suckling, J.Brammer, M.J.Williams, S.C.et al.A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 2004;6:550564.CrossRefGoogle ScholarPubMed
Morecraft, R.J.Geula, C.Mesulam, M.M.Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 1992;323:341358.CrossRefGoogle ScholarPubMed
Ochsner, K.N.Knierim, K.Ludlow, D.H.Hanelin, J.Ramachandran, T.Glover, G.et al.Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. J Cogn Neurosci 2004;16:17461772.CrossRefGoogle ScholarPubMed
Owen, A.M.McMillan, K.M.Laird, A.R.Bullmore, E.N-Back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005;25:4659.CrossRefGoogle ScholarPubMed
Petrides, M.Pandya, D.N.Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 1998;273:5266.CrossRefGoogle Scholar
Pochon, J.B.Levy, R.Fossati, P.Lehericy, S.Poline, J.B.Pillon, B.et al.The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci USA 2002;99:56695674.CrossRefGoogle ScholarPubMed
Quraishi, S.Frangou, S.Neuropsychology of bipolar disorder: a review. J Affect Disord 2002;72:209226.CrossRefGoogle ScholarPubMed
Raymont, V.Bettany, D.Frangou, S.The Maudsley bipolar disorder project. Clinical characteristics of bipolar disorder I in a catchment area treatment sample. Eur Psychiatry 2003;18:1317.CrossRefGoogle Scholar
Reiman, E.M.Lane, R.D.Ahern, G.L.Schwartz, G.E.Davidson, R.J.Friston, K.J.et al.Neuroanatomical correlates of externally and internally generated human emotion. Am J Psychiatry 1997;154:918925.Google ScholarPubMed
Rogers, R.D.Owen, A.M.Middleton, H.C.Williams, E.J.Pickard, J.D.Sahakian, B.J.et al.Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 1999;19:90299038.CrossRefGoogle ScholarPubMed
Rolls, E.T.The orbitofrontal cortex. Phil Trans R Soc Lond B Biol Sci 1996;351:14331443.Google ScholarPubMed
Rubinsztein, J.S.Sahakian, B.J.Cognitive impairment in bipolar disorder. Br J Psychiatry 2002;181:440.CrossRefGoogle ScholarPubMed
Smith, E.E.Jonides, J.Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 1998;95:1206112068.CrossRefGoogle ScholarPubMed
Smith, E.E.Jonides, J.Storage and executive processes in the frontal lobes. Science 1999;283:16571661.CrossRefGoogle ScholarPubMed
Talairach, J.Tournoux, P.A Co-planar Stereotactic Atlas of the Human Brain. New York: Thieme Medical Publishers; 1988.Google Scholar
Wallis, J.D.Miller, E.K.Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur J Neurosci 2003;18:20692081.CrossRefGoogle ScholarPubMed
Watanabe, M.Reward expectancy in primate prefrontal neurons. Nature 1996;382:629632.CrossRefGoogle ScholarPubMed
Weinberger, D.R.Berman, K.F.Prefrontal function in schizophrenia: confounds and controversies. Phil Trans R Soc Lond B 1996;351:14951503.Google ScholarPubMed
Submit a response

Comments

No Comments have been published for this article.