Article contents
High-entropy dual functions over finite fields and locally decodable codes
Published online by Cambridge University Press: 08 March 2021
Abstract
We show that for infinitely many primes p there exist dual functions of order k over ${\mathbb{F}}_p^n$ that cannot be approximated in $L_\infty $-distance by polynomial phase functions of degree $k-1$. This answers in the negative a natural finite-field analogue of a problem of Frantzikinakis on $L_\infty $-approximations of dual functions over ${\mathbb{N}}$ (a.k.a. multiple correlation sequences) by nilsequences.
MSC classification
- Type
- Analysis
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 1
- Cited by