Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-10-31T16:36:43.724Z Has data issue: false hasContentIssue false

Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates

Published online by Cambridge University Press:  11 January 2021

Neal Bez
Affiliation:
Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Saitama338-8570, Japan; E-mail: nealbez@mail.saitama-u.ac.jp.
Sanghyuk Lee
Affiliation:
Department of Mathematical Sciences and RIM, Seoul National University, Seoul151-747, Korea; E-mail: shklee@snu.ac.kr.
Shohei Nakamura
Affiliation:
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan; E-mail: nakamura-shouhei@ed.tmu.ac.jp. Current address: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan; E-mail: srmkn@math.sci.osaka-u.ac.jp.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We establish new Strichartz estimates for orthonormal families of initial data in the case of the wave, Klein–Gordon and fractional Schrödinger equations. Our estimates extend those of Frank–Sabin in the case of the wave and Klein–Gordon equations, and generalize work of Frank et al. and Frank–Sabin for the Schrödinger equation. Due to a certain technical barrier, except for the classical Schrödinger equation, the Strichartz estimates for orthonormal families of initial data have not previously been established up to the sharp summability exponents in the full range of admissible pairs. We obtain the optimal estimates in various notable cases and improve the previous results.

The main novelty of this paper is our derivation and use of estimates for weighted oscillatory integrals, which we combine with an approach due to Frank and Sabin. Our weighted oscillatory integral estimates are, in a certain sense, rather delicate endpoint versions of known dispersive estimates with power-type weights of the form $|\xi |^{-\lambda }$ or $(1 + |\xi |^2)^{-\lambda /2}$, where $\lambda \in \mathbb {R}$. We achieve optimal decay rates by considering such weights with appropriate $\lambda \in \mathbb {C}$. For the wave and Klein–Gordon equations, our weighted oscillatory integral estimates are new. For the fractional Schrödinger equation, our results overlap with prior work of Kenig–Ponce–Vega in a certain regime. Our contribution to the theory of weighted oscillatory integrals has also been influenced by earlier work of Carbery–Ziesler, Cowling et al., and Sogge–Stein.

Finally, we provide some applications of our new Strichartz estimates for orthonormal families of data to the theory of infinite systems of Hartree type, weighted velocity averaging lemmas for kinetic transport equations, and refined Strichartz estimates for data in Besov spaces.

Type
Differential Equations
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press

References

Alazard, T., Burq, N. and Zuily, C., ‘A stationary phase type estimate’, Proc. Amer. Math. Soc. 145 (2017), 28712880.CrossRefGoogle Scholar
Arsénio, D., ‘On the global existence of mild solutions to the Boltzmann equation for small data in ${L}^D$’, Commun. Math. Phys. 302 (2011), 453476.CrossRefGoogle Scholar
Bégout, P. and Vargas, A., ‘Mass concentration phenomena for the ${L}^2$-critical nonlinear Schrödinger equation’, Trans. Amer. Math. Soc. 359 (2007), 52575282.CrossRefGoogle Scholar
Bennett, J., Bez, N., Gutiérrez, S. and Lee, S., ‘On the Strichartz estimates for the kinetic transport equation’, Comm. Partial Differential Equations 39 (2014), 18211826.CrossRefGoogle Scholar
Bez, N., Hong, Y., Lee, S., Nakamura, S. and Sawano, Y., ‘On the Strichartz estimates for orthonormal systems of initial data with regularity’, Adv. Math. 354 (2019), 106736.CrossRefGoogle Scholar
Bez, N., Lee, S. and Nakamura, S., ‘Maximal estimates for the Schrödinger equation with orthonormal initial data’, Selecta Math. 26 (2020), article number 52.CrossRefGoogle Scholar
Bez, N., Lee, S., Nakamura, S. and Sawano, Y., ‘Weighted Strichartz estimates for the kinetic transport equation’, preprint.Google Scholar
Bourgain, J., ‘Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity’, Int. Math. Res. Not. 5 (1998), 253283.CrossRefGoogle Scholar
Bournaveas, N., Calvez, V., Gutiérrez, S. and Perthame, B., ‘Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates’, Comm. Partial Differential Equations 33 (2008), 7995.CrossRefGoogle Scholar
Brocchi, G., Oliveira e Silva, D. and Quilodrán, R., ‘Sharp Strichartz inequalities for fractional and higher order Schrödinger equations’, Anal. PDE. 13 (2020), 477526.CrossRefGoogle Scholar
Candy, T., ‘Multi-scale bilinear restriction estimates for general phases’, Math. Ann. 375 (2019), 777843.CrossRefGoogle Scholar
Carbery, A. and Ziesler, S., ‘Restriction and decay for flat hypersurfaces’, Publ. Mat. 46 (2002), 405434.CrossRefGoogle Scholar
Carles, R. and Keraani, S., ‘On the role of quadratic oscillations in nonlinear Schrödinger equation II. The ${L}^2$-critical case’, Trans. Amer. Math. Soc. 359 (2007), 3362.CrossRefGoogle Scholar
Carneiro, E., Oliveira e Silva, D. and Sousa, M., ‘Extremizers for Fourier restriction on hyperboloids’, Ann. Inst. H. Poincaré Anal. Non Linéaire 36 (2019), 389415.CrossRefGoogle Scholar
Carneiro, E., Oliveira e Silva, D., Sousa, M. and Stovall, B., ‘Extremizers for adjoint Fourier restriction on hyperboloids: the higher dimensional case’, to appear in Indiana Univ. Math. J.Google Scholar
Castella, F. and Perthame, B., ‘Estimations de Strichartz pour les èquations de transport cinétique’, C. R. Acad. Sci. Paris Sér. I Math. 332 (1996), 535540.Google Scholar
Chae, M., Hong, S., Kim, J., Lee, S. and Yang, C. W., ‘On mass concentration for the$\; {L}^2$-critical nonlinear Schrödinger equations’, Comm. Partial Differential Equations 34 (2009), 486505.CrossRefGoogle Scholar
Chae, M., Hong, S. and Lee, S., ‘Mass concentration for the ${L}^2$-critical nonlinear Schrödinger equations of higher order’, Discrete Contin. Dyn. Syst. 29 (2011), 909928.CrossRefGoogle Scholar
Chen, T., Hong, Y. and Pavlović, N., ‘Global well-posedness of the NLS system for infinitely many fermions’, Arch. Ration. Mech. Anal. 224 (2017), 91123.CrossRefGoogle Scholar
Chen, T., Hong, Y. and Pavlović, N., ‘On the scattering problem for infinitely many fermions in dimension $d\ge 3\;$ at positive temperature’, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 393416.CrossRefGoogle Scholar
Cho, C., Koh, Y. and Seo, I., ‘On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications’, Discrete Contin. Dyn. Syst. 36 (2016), 19051926.CrossRefGoogle Scholar
Cho, Y., Hwang, G., Hajaiej, H. and Ozawa, T., ‘On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity’, Funkcial. Ekvac. 56 (2012), 193224.CrossRefGoogle Scholar
Cho, Y., Hwang, G., Kwon, S. and Lee, S., ‘On the finite time blow-up for mass-critical Hartree equations’, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 467479.CrossRefGoogle Scholar
Cho, Y. and Lee, S., ‘Strichartz estimates in spherical coordinates’, Indiana Univ. Math. J. 62 (2013), 9911020.CrossRefGoogle Scholar
Cho, Y., Ozawa, T. and Xia, S., ‘Remarks on some dispersive estimates’, Commun. Pure Appl. Anal. 10 (2011), 11211128.CrossRefGoogle Scholar
Cowling, M., Disney, S., Mauceri, G. and Müller, D., ‘Damping oscillatory integrals’, Invent. Math. 101 (1990), 237260.CrossRefGoogle Scholar
Cwikel, M., ‘On ${\left({L}^{p_0}\left({A}_0\right),{L}^{p_1}\left({A}_1\right)\right)}_{\theta, q}$’, Proc. Amer. Math. Soc. 44 (1974), 286292.Google Scholar
Fang, D. and Wang, C., ‘Some remarks on homogeneous estimates for wave equation’, Nonlinear Anal. 65 (2006), 697706.CrossRefGoogle Scholar
Frank, R., Lewin, M., Lieb, E. H. and Seiringer, R., ‘Strichartz inequality for orthonormal functions’, J. Eur. Math. Soc. 16 (2014), 15071526.CrossRefGoogle Scholar
Frank, R. and Sabin, J., ‘Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates’, Amer. J. Math. 139 (2017), 16491691.CrossRefGoogle Scholar
Frank, R. and Sabin, J., ‘The Stein–Tomas inequality in trace ideals’, Séminaire Laurent Schwartz – EPD et applications (2015–2016), Exp. No. XV, 2016.CrossRefGoogle Scholar
Fröhlich, J. and Lenzmann, E., ‘Blow-up for nonlinear wave equations describing boson stars’, Commun. Pure Appl. Math. 60 (2007), 16911705.CrossRefGoogle Scholar
Gelfand, I. M. and Shilov, G. E., Generalized Functions. Vol. I: Properties and Operations (New York, Academic Press, 1964). Translated by Eugene Saletan.Google Scholar
Gontier, D., Lewin, M. and Nazar, F., The nonlinear Schrödinger equation for orthonormal functions: I. Existence of ground states, arXiv:2002.04963.Google Scholar
Guo, Q. and Zhu, S., ‘Sharp threshold of blow-up and scattering for the fractional Hartree equation’, J. Differential Equations 264 (2018), 28022832.CrossRefGoogle Scholar
Guo, Z., Li, J., Nakanishi, K. and Yan, L., ‘On the boundary Strichartz estimates for wave and Schrödinger equations’, J. Differential Equations 265 (2018), 56565675.CrossRefGoogle Scholar
Guo, Z. and Peng, L., ‘Endpoint Strichartz estimate for the kinetic transport equation in one dimension’, C. R. Math. Acad. Sci. Paris 345 (2007), 253256.CrossRefGoogle Scholar
Guo, Z. and Wang, Y., ‘Improved Strichartz estimates for a class of dispersive eqations in the radial case and their applications to nonlinear Schrödinger and wave equations’, J. Anal. Math. 124 (2014), 138.CrossRefGoogle Scholar
Ginibre, J. and Velo, G., ‘Time decay of finite energy solutions of the non linear Klein–Gordon and Schrödinger equations’, Ann. Inst. H. Poincaré Anal. Non Linéaire. 43 (1985), 399442.Google Scholar
He, L. and Jiang, J.-C., ‘Well-posedness and scattering for the Boltzmann equations: soft potential with cut-off’, J. Stat. Phys. 168 (2017), 470481.CrossRefGoogle Scholar
Hong, Y., Kwon, S. and Yoon, H., ‘Global existence versus finite time blowup dichotomy for the system of nonlinear Schrödinger equations’, J. Math. Pures Appl. 125 (2019), 283320.CrossRefGoogle Scholar
Hong, Y. and Sire, Y., ‘On fractional Schrödinger equations in Sobolev spaces’, Commun. Pure Appl. Anal. 14 (2015), 22652282.CrossRefGoogle Scholar
Hörmander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Class. Math. (Springer-Verlag, New York, 2003).CrossRefGoogle Scholar
Ionescu, A. D. and Pusateri, F., ‘Nonlinear fractional Schrödinger equations in one dimension’, J. Funct. Anal. 266 (2014), 139176.CrossRefGoogle Scholar
Karpman, V. I., ‘Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations’, Phys. Rev. E 53 (1996), 13361339.CrossRefGoogle ScholarPubMed
Karpman, V. I. and Shagalov, A. G., ‘Stability of soliton described by nonlinear Schrödinger-type equations with higher-order dispersion’, Phys. D 144 (2000), 194210.CrossRefGoogle Scholar
Ke, Y., ‘Remark on the Strichartz estimates in the radial case’, J. Math. Anal. Appl. 387 (2012), 857861.CrossRefGoogle Scholar
Keel, M. and Tao, T., ‘Endpoint Strichartz estimates’, Amer. J. Math . 120 (1998), 955980.CrossRefGoogle Scholar
Kenig, C. E., Ponce, G. and Vega, L., ‘Oscillatory integrals and regularity of dispersive equations’, Indiana Univ. Math. J. 40 (1991), 3369.CrossRefGoogle Scholar
Killip, R., Stovall, B. and Visan, M., ‘Scattering for the cubic Klein-Gordon equation in two space dimensions’, Trans. Amer. Math. Soc. 364 (2012), 15711631.CrossRefGoogle Scholar
Laskin, N., ‘Fractional quantum mechanis and Lévy path integrals’, Phys. Lett A 268 (2000), 298305.CrossRefGoogle Scholar
Laskin, N., ‘Fractional Schrödinger equation’, Phys. Rev. E 66, 056108 (2002).CrossRefGoogle ScholarPubMed
Lenzmann, E., ‘Well-posedness for semi-relativistic Hartree equations of critical type’, Math. Phys. Anal. Geom. 10 (2007), 4364.CrossRefGoogle Scholar
Lewin, M. and Sabin, J., ‘The Hartree equation for infinitely many particles. I. Well-posedness theory’, Comm. Math. Phys. 334 (2015), 117170.CrossRefGoogle Scholar
Lewin, M. and Sabin, J., The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, Anal. PDE 7 (2014), 13391363.CrossRefGoogle Scholar
Lieb, E. H., ‘An ${L}^p$bound for the Riesz and Bessel potentials of orthonormal functions’, J. Funct. Anal. 51 (1983), 159165.CrossRefGoogle Scholar
Lieb, E. H. and Thirring, W., ‘Bound on kinetic energy of fermions which proves stability of matter’, Phys. Rev. Lett. 35 (1975), 687689.CrossRefGoogle Scholar
Lions, J. L. and Peetre, J., ‘Sur une classe d’espaces d’interpolation’, Inst. Hautes Étud. Sci. Publ. Math. 19 (1964), 568.CrossRefGoogle Scholar
Montgomery-Smith, S. J., ‘Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations’, Duke Math. J. 91 (1998), 393408.CrossRefGoogle Scholar
Moyua, A., Vargas, A. and Vega, L., ‘Schrödinger maximal function and restriction properties of the Fourier transform’, Internat. Math. Res. Notices 16 (1996), 793815.CrossRefGoogle Scholar
Moyua, A., Vargas, A. and Vega, L., ‘Restriction theorems and maximal operators related to oscillatory integrals in ${\mathbb{R}}^3$’, Duke Math. J. 96 (1999), 547574.CrossRefGoogle Scholar
Nakamura, S., ‘The orthonormal Strichartz inequality on torus’, Trans. Amer. Math. Soc. 373 (2020), 14551476.CrossRefGoogle Scholar
O'Neil, R., ‘Convolution operators and $L\left(p,q\right)\;$ spaces’, Duke Math. J. 30 (1963), 129142.CrossRefGoogle Scholar
Ovcharov, E., ‘Counterexamples to Strichartz estimates for the kinetic transport equation based on Besicovitch sets’, Nonlinear Analysis: Theory, Methods & Applications 74 (2011), 25152522.CrossRefGoogle Scholar
Pausader, B., ‘Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case’, Dyn. Partial Differ. Equ. 4 (2007), 197225.CrossRefGoogle Scholar
Pausader, B., ‘The cubic fourth-order Schrödinger equation’, J. Funct. Anal. 256 (2009), 24732517.CrossRefGoogle Scholar
Quilodrán, R., ‘On extremizing sequences for the adjoint restriction inequality on the cone’, J. London Math. Soc. 87 (2013), 223246.CrossRefGoogle Scholar
Ramos, J., ‘A refinement of the Strichartz inequality for the wave equation and applications’, Adv. Math. 230 (2012), 649698.CrossRefGoogle Scholar
Sabin, J., ‘The Hartree equation for infinite quantum systems’, Journées équations aux dérivées partielles, (2014), Exp. No. 8. 18p.CrossRefGoogle Scholar
Simon, B., Trace Ideals and Their Applications, Vol. 35 of London Mathematical Society Lecture Note Series (Cambridge, Cambridge University Press, 1979).Google Scholar
Sogge, C. D. and Stein, E. M., Averages of functions over hypersurfaces in ${\mathbb{R}}^n$, Invent. Math. 82 (1985), 543556.CrossRefGoogle Scholar
Stein, E. M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, No. 43 (Princeton University Press, 1993).Google Scholar
Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32 (Princeton University Press, 1971).Google Scholar
Strichartz, R., ‘Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations’, Duke Math. J. 44 (1977), 705714.CrossRefGoogle Scholar
Tao, T., ‘A sharp bilinear restrictions estimate for paraboloids’, Geom. Funct. Anal. 13 (2003), 13591384.CrossRefGoogle Scholar
Tao, T., ‘Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates’, Math. Z. 238 (2001), 215268.CrossRefGoogle Scholar
Triebel, H., Theory of Function Spaces II, Monographs in Mathematics, Vol. 84 (Birkhäuser Verlag, Basel, 1992).CrossRefGoogle Scholar