Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T02:46:04.779Z Has data issue: false hasContentIssue false

Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity

Published online by Cambridge University Press:  07 September 2010

LONG WU
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
DONG JIA*
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
HAIBIN LI
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
FEI DENG
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
YIQUAN LI
Affiliation:
State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences, Nanjing University, Nanjing 210093, China
*
*Author for correspondence: djia@nju.edu.cn

Abstract

The U–Pb geochronology of 687 detrital zircons from the voluminous Upper Neoproterozoic–Ordovician succession in the Wuyishan Fold Belt of South China reveals a common dominant c. 1200–950 Ma group, indicative of an outboard provenance terrane with a Grenville-age province to the southeast during the late Neoproterozoic–Early Palaeozoic. Compared with coeval samples from the Gondwanan and eastern Laurentian margins, our data show a scarcity of distinctive Gondwanan provenances (c. 650–500 Ma) and reveal some Laurentian signatures. These results argue against the peri-Gondwanan setting for South China during the late Neoproterozoic–Ordovician, instead implying a Laurentian affinity.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barley, M. E., Bekker, A. & Krapez, B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters 238, 156–71.CrossRefGoogle Scholar
BGMRGD (Bureau of Geology and Mineral Resources of Guangdong Province). 1988. Regional Geology of Guangdong Province, pp. 1052. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
BGMRJX (Bureau of Geology and Mineral Resources of Jiangxi Province). 1984. Regional Geology of Jiangxi Province, pp. 6151. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Bleeker, W. 2003. The late Archean record: a puzzle in c. 35 pieces. Lithos 71, 99134.CrossRefGoogle Scholar
Bream, B. R., Hatcher, J. R. D., Miller, C. F. & Fullagar, P. D. 2004. Detrital zircon ages and Nd isotopic data from the southern Appalachian crystalline core, Georgia, Southern Carolina, North Carolina, and Tennessee: new provenance constraints for part of the Laurentian margin. In Proterozoic Tectonic Evolution of the Grenville Orogen in North America (eds Tollo, R. P., Corriveau, L., McLelland, J. & Bartholomew, M. J.), pp. 459–75. Geological Society of America, Memoir no. 197.CrossRefGoogle Scholar
Cawood, P. A., Johnson, M. R. W. & Nemchin, A. A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth and Planetary Science Letters 255, 7084.CrossRefGoogle Scholar
Cawood, P. A. & Nemchin, A. A. 2000. Provenance record of a rift basin: U/Pb ages of detrital zircons from the Perth Basin, Western Australia. Sedimentary Geology 134, 209–34.CrossRefGoogle Scholar
Cawood, P. A. & Nemchin, A. A. 2001. Source regions for Laurentian margin sediments: constraints from U/Pb dating of detrital zircon in the Newfoundland Appalachians. Geological Society of America Bulletin 113, 1234–46.2.0.CO;2>CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Smith, M. & Loewy, S. 2003. Source of the Dalradian Supergroup constrained by U/Pb dating of detrital zircon and implications for the East Laurentian margin. Journal of the Geological Society, London 160, 231–46.CrossRefGoogle Scholar
Cawood, P. A., Nemchin, A. A., Strachan, R. A., Prave, T. & Krabbendam, M. 2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. Journal of the Geological Society, London 164, 257–75.CrossRefGoogle Scholar
Chen, J., Foland, K. A., Xing, F., Xu, X. & Zhou, T. 1991. Magmatism along the southeast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China. Geology 19, 815–18.Google Scholar
Dalziel, I. W. D. & Soper, N. J. 2001. Neoproterozoic extension on the Scottish Promontory of Laurentia; paleogeographic and tectonic implications. Journal of Geology 109, 299317.CrossRefGoogle Scholar
Decelles, P. G., Carrapa, B. & Gehrels, G. E. 2007. Detrital zircon U–Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology 119, 275–88.Google Scholar
Eriksson, K. A., Campbell, I. H., Palin, J. M., Allen, C. M. & Bock, B. 2004. Evidence for multiple recycling in Neoproterozoic through Pennsylvanian sedimentary rocks of the Central Appalachian Basin. Journal of Geology 112, 261–76.CrossRefGoogle Scholar
Evans, D. A. D., Li, Z. X., Kirchvink, J. L. & Wingate, M. T. D. 2000. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research 100, 313–34.CrossRefGoogle Scholar
Fergusson, C. L., Carr, P. F., Fanning, C. M. & Green, T. J. 2001. Proterozoic–Cambrian detrital zircon and monazite ages from the Anakie Inlier, central Queensland: Grenville and Pacific-Gondwana signatures. Australian Journal of Earth Sciences 48, 857–66.CrossRefGoogle Scholar
Fergusson, C. L., Henderson, R. A., Fanning, C. M. & Withnall, I. W. 2007. Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia: implications for the tectonic history of the East Gondwana continental margin. Journal of the Geological Society, London 164, 215–25.CrossRefGoogle Scholar
Fortey, R. A. & Cocks, L. R. M. 2003. Palaeontological evidence bearing on global Ordovician–Silurian continental reconstructions. Earth-Science Reviews 61, 245307.CrossRefGoogle Scholar
Friend, C. R. L. & Kinny, P. D. 1995. New evidence for protolith ages of Lewisian granulites, northwest Scotland. Geology 23, 1027–30.2.3.CO;2>CrossRefGoogle Scholar
Goodge, J. W., Williams, I. S. & Myrow, P. M. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: detrital record of rift-, passive-, and active-margin sedimentation. Geological Society of America Bulletin 116, 1253–79.CrossRefGoogle Scholar
Guo, L. Z., Shi, Y. S., Lu, H. F., Ma, R. S., Dong, H. G. & Yang, S. F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of SE Asian Earth Sciences 3, 8793.Google Scholar
Heaman, L. M. 1997. Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25, 299302.2.3.CO;2>CrossRefGoogle Scholar
Heaman, L. M., LeCheminant, A. N. & Rainbird, R. H. 1992. Nature and timing of Franklin igneous events Canada; implications for a late Proterozoic mantle plume and the break-up of Laurentia. Earth and Planetary Science Letters 109, 117–31.CrossRefGoogle Scholar
Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–12.CrossRefGoogle ScholarPubMed
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M. & Grove, M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: implications for chronostratigraphy and collisional tectonics. Tectonophysics 451, 97122.CrossRefGoogle Scholar
Huang, T. K. 1945. On major tectonic forms of China. Geological Memoirs of the Geological Survey of China, Series A, no. 20. Chungking: National Geological Survey of China, 165 (in Chinese with English abstract).Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevski, S. A., Trane, K. & Vernikovski, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Wartho, J., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin 122, 772–93.CrossRefGoogle Scholar
Li, Z. X., Li, X. H., Zhou, H. & Kinny, P. D. 2002. Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30, 163–6.2.0.CO;2>CrossRefGoogle Scholar
Li, Z. X., Zhang, L. & Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–10.2.3.CO;2>CrossRefGoogle Scholar
Liu, B. & Xu, X. 1994. Atlas of the Lithofacies and Paleogeography of South China (Sinian to Triassic), pp. 3067. Beijing: Science Press.Google Scholar
Myrow, P. M., Hughes, N. C., Paulsen, T. S., Williams, I. S., Parcha, S. K., Thompson, K. R., Bowring, S. A., Peng, S. C. & Ahluwalia, A. D. 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters 212, 433–41.CrossRefGoogle Scholar
Playford, G., Ribecai, C. & Tongiorgi, M. 1995. Ordovician acritarch genera Peteinosphaeridium, Liliosphaeridium and Cycloposphaeridium: morphology, taxonomy, biostratigraphy and paleogeographic significance. Bollettino della Societa Paleontologica Italiana 34, 354.Google Scholar
Rong, J. Y., Chen, X., Su, Y. Z., Ni, Y. N., Zhan, R. B., Chen, T. E., Fu, L. P., Li, R. Y. & Fan, J. X. 2003. Silurian paleogeography of China. In Silurian Lands and Seas: Paleogeography outside of Laurentia (eds E. Landing & M Johnson), pp. 243–98. New York State Museum Bulletin no. 493.Google Scholar
Schultz, M. E. J., Chacko, T., Heaman, L. M., Sandeman, H. A., Simonetti, A. & Creaser, R. A. 2007. Queen Maud block: a newly recognized Paleoproterozoic (2.4–2.5 Ga) terrane in northwest Laurentia. Geology 35, 707–10.CrossRefGoogle Scholar
Shu, L. 2006. Pre-Devonian tectonic evolution of South China: from Cathaysian block to Caledonian period folded orogenic belt. Geological Journal of China Universities 12, 418–31.Google Scholar
Veevers, J. J. 2007. Pan-Gondwanaland post-collisional extension marked by 650–500 Ma alkaline rocks and carbonatites and related detrital zircons: a review. Earth-Science Reviews 83, 147.CrossRefGoogle Scholar
Xu, H. K. & Liu, D. Y. 1984. Late Early Ordovician brachiopods of southwestern China: Bulletin of Nanjing Institute of Geology and Paleontology. Academia Sinica 8, 147236.Google Scholar
Yang, Z., Sun, Z., Yang, T. & Pei, J. 2004. A long connection (750–380 Ma) between South China and Australia: paleomagnetic constraints. Earth and Planetary Science Letters 220, 423–34.CrossRefGoogle Scholar
Yu, J. H., O'Reilly, S. Y., Wang, L., Griffin, W. L., Zhang, M., Wang, R., Jiang, S. & Shu, L. 2008. Where was South China in the Rodinia supercontinent? Evidence from U–Pb geochronology and Hf isotopes of detrital zircons. Precambrian Research 164, 115.CrossRefGoogle Scholar
Supplementary material: File

Wu supplementary material

Appendix.doc

Download Wu supplementary material(File)
File 4 MB