Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-18T07:49:10.325Z Has data issue: false hasContentIssue false

GENERATORS OF THE EISENSTEIN–PICARD MODULAR GROUP IN THREE COMPLEX DIMENSIONS

Published online by Cambridge University Press:  25 February 2013

BAOHUA XIE
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China e-mails: xiexbh@gmail.com, jywang@hnu.edu.cn, ypjiang731@163.com
JIEYAN WANG
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China e-mails: xiexbh@gmail.com, jywang@hnu.edu.cn, ypjiang731@163.com
YUEPING JIANG
Affiliation:
College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China e-mails: xiexbh@gmail.com, jywang@hnu.edu.cn, ypjiang731@163.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Little is known about the generators system of the higher dimensional Picard modular groups. In this paper, we prove that the higher dimensional Eisenstein–Picard modular group PU(3, 1;ℤ[ω3]) in three complex dimensions can be generated by four given transformations.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.Falbel, E., Francsics, G., Lax, P. D. and Parker, J. R., Generators of a Picard modular group in two complex dimensions, Proc. Amer. Math. Soc. 139 (2011), 24392447.CrossRefGoogle Scholar
2.Falbel, E., Francsics, G. and Parker, J. R., The geometry of Gauss–Picard modular group, Math. Ann. 349 (2011), 459508.Google Scholar
3.Falbel, E. and Parker, J. R., The geometry of the Eisenstein–Picard modular group, Duke Math. J. 131 (2006), 249289.CrossRefGoogle Scholar
4.Francsics, G. and Lax, P., A semi-explicit fundamental domain for a Picard modular group in complex hyperbolic space, Contemp. Math. 238 (2005), 211226.Google Scholar
5.Francsics, G. and Lax, P., An explicit fundamental domain for the Picard modular group in two complex dimensions, Preprint (2005), pp. 1–25, arXiv:math/0509708.Google Scholar
6.Francsics, G. and Lax, P., Analysis of a Picard modular group, Proc. Natl. Acad. Sci. USA 103 (2006), 1110311105.CrossRefGoogle ScholarPubMed
7.Goldman, W. M., Complex hyperbolic geometry (Clarendon, Oxford, 1999).Google Scholar
8.Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers (Clarendon, Oxford, 1954).Google Scholar
9.Holzapfel, R. P., Invariants of arithmetic ball quotient surfaces, Math. Nachr. 103 (1981), 117153.Google Scholar
10.Parker, J. R., Notes on complex hyperbolic geometry, Preprint (2003).Google Scholar
11.Stewart, I. N. and Tall, D. O., Algebraic number theory (Chapman and Hall Ltd., 1979).CrossRefGoogle Scholar
12.Wang, J., Xiao, Y. and Xie, B., Generators of the Eisenstein–Picard modular groups, J. Aust. Math. Soc. 91 (2011), 421429.Google Scholar
13.Zhao, T., Generators for the Euclidean–Picard modular groups, Tran. Amer. Math. Soc. 364 (2012), 32413263.CrossRefGoogle Scholar