Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-10T19:14:47.296Z Has data issue: false hasContentIssue false

Effect of thenardite on the direct detection of aromatic amino acids: implications for the search for life in the solar system

Published online by Cambridge University Press:  28 August 2009

C. Doc Richardson
Affiliation:
Geosciences Department, University of Montana, Missoula, 32 Campus Drive #1296, Missoula, MT 59812, USA
Nancy W. Hinman
Affiliation:
Geosciences Department, University of Montana, Missoula, 32 Campus Drive #1296, Missoula, MT 59812, USA
Jill R. Scott*
Affiliation:
Chemical Sciences, Idaho National Laboratory, 1765 North Yellowstone Hwy, Idaho Falls, ID 83415, USA

Abstract

With the discovery of Na-sulphate minerals on Mars and Europa, recent studies using these minerals have focused on their ability to assist in the detection of bio/organic signatures. This study further investigates the ability of thenardite (Na2SO4) to effectively facilitate the ionization and identification of aromatic amino acids (phenylalanine, tyrosine and tryptophan) using a technique called geomatrix-assisted laser desorption/ionization in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry. This technique is based on the ability of a mineral host to facilitate desorption and ionization of bio/organic molecules for detection. Spectra obtained from each aromatic amino acid alone and in combination with thenardite show differences in ionization mechanism and fragmentation patterns. These differences are due to chemical and structural differences between the aromatic side chains of their respective amino acid. Tyrosine and tryptophan when combined with thenardite were observed to undergo cation-attachment ([M+Na]+), due to the high alkali ion affinity of their aromatic side chains. In addition, substitution of the carboxyl group hydrogen by sodium led to formation of [M-H+Na]Na+ peaks. In contrast, phenylalanine mixed with thenardite showed no evidence of Na+ attachment. Understanding how co-deposition of amino acids with thenardite can affect the observed mass spectra is important for future exploration missions that are likely to use laser desorption mass spectrometry to search for bio/organic compounds in extraterrestrial environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armentrout, P.B. & Rodgers, M.T. (2000). An absolute sodium cation affinity scale: Threshold collision-induced dissociation experiments and ab initio theory. J. Phys. Chem. 104, 22382247.CrossRefGoogle Scholar
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compounds on Mars. Geology 34, 357360.CrossRefGoogle Scholar
Aubriet, F. (2007). Laser-induced Fourier transform ion cyclotron resonance mass spectrometry of organic and inorganic compounds: Methodologies and applications. Anal. Bioanal. Chem. 389, 13811396.CrossRefGoogle ScholarPubMed
Aubriet, F., Carre, V. & Muller, J.F. (2005). Laser desorption and laser ablation Fourier transform mass spectrometry for the analysis of pollutants in complex matrices. Spectrosc. Eur. 17, 1422.Google Scholar
Aubriet, F. & Muller, J. (2008). Laser ablation mass spectrometry of inorganic transition metal compounds. Am. Soc. Mass Spectrom. 19, 488501.CrossRefGoogle ScholarPubMed
Budimir, N., Blais, J.C., Fournier, T. & Tabet, J.C. (2007). Desorption/ionization on porous silicon mass spectrometry (DIOS) of model cationized fatty acids. J. Mass Spectrom. 42, 4248.CrossRefGoogle ScholarPubMed
Campbell, S., Beauchamp, J., Rempe, M. & Lichtenberger, D. (1992). Correlations of lone pair ionization energies with proton affinities of amino acids and related compounds. Site specificity or protonation. Int. J. Mass Spectrom. Ion Processes 117, 8399.CrossRefGoogle Scholar
Chela-Flores, J. (2006). The sulphur dilemma: Are there biosignatures on Europa's icy and patchy surface? Int. J. Astrobiol. 5, 1722.CrossRefGoogle Scholar
Chyba, C. & McDonald, G. (1995). The origin of life in the solar system: Current issues. Annu. Rev. Earth Planet. Scie. 23, 215249.CrossRefGoogle ScholarPubMed
Chyba, C. & Phillips, C. (2002). Europa as an abode of life. Orig. Life Evol. Biosph. 32, 4767.CrossRefGoogle ScholarPubMed
Comisarow, M.B. (1993). Fundamental aspects of FT-ICR and applications to chemistry. Hyperfine Interact. 81, 171178.CrossRefGoogle Scholar
Dunbar, R. (2000). Complexation of Na+ and K+ to aromatic amino acids: A density functional computational study of cation-interaction. J. Phys. Chem. 104, 80678074.CrossRefGoogle Scholar
El Aribi, H., Orlova, G., Hopkinson, A. & Siu, K. (2004). Gas-phase fragmentation reactions of protonated aromatic amino acids: concomitant and consecutive neutral eliminations and radical cation formation. J. Phys. Chem. A 108, 38443853.CrossRefGoogle Scholar
Evans-Nguyen, T., Becker, L., Doroschenko, V. & Cotter, R. (2008). Development of a low power, high mass range mass spectrometer for Mars surface analysis. Int. J. Mass Spectrom. 278, 170177.CrossRefGoogle Scholar
Fanale, F.P., Li, Y.-H., De Carlo, E., Farley, C., Sharma, S.K., Horton, K. & Granahan, J.C. (2001). An experimental estimate of Europa's “ocean” composition independent of Galileo orbital remote sensing. J. Geophys. Res. 106, 14 59514 600.CrossRefGoogle Scholar
Gaidos, E., Nealson, K. & Kirschvink, J. (1999). Life in ice-covered oceans. Science 284, 16311633.CrossRefGoogle ScholarPubMed
Gogichaeva, N.V., Williams, T. & Alterman, M.A. (2007). MALDI TOF/TOF tandem mass spectrometry as a new tool for amino acid analysis. J. Am. Soc. Mass Spectrom. 18, 279284.CrossRefGoogle ScholarPubMed
Goheen, S.C., Wahl, K.L., Campbell, J.A. & Hess, W.P. (1997). Mass spectrometry of low molecular mass solids by matrix-assisted laser desorption/ionization. J. Mass Spectrom. 32, 820828.3.0.CO;2-Q>CrossRefGoogle Scholar
Ham, J.E., Durham, B. & Scott, J.R. (2003). Comparison of laser desorption and matrix-assisted laser desorption/ionization for ruthenium and osmium trisbipyridine complexes using Fourier transform mass spectrometry. J. Am. Soc. Mass Spectrom. 14, 393400.CrossRefGoogle ScholarPubMed
Hill, C. & Forti, P. (1997). Cave Minerals of the World. National Speleological Society, Huntsville, AL.Google Scholar
Johnson, R.E. (2000). Sodium at Europa. Icarus 143, 429433.CrossRefGoogle Scholar
Junk, G. & Svec, H. (1963). The mass spectra of the a-amino acids. J. Am. Chem. Soc. 85, 839.CrossRefGoogle Scholar
Karas, M., Bachmann, D. & Hillenkamp, F. (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57, 29352939.CrossRefGoogle Scholar
Karas, M. & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 22992301.CrossRefGoogle Scholar
Kargel, J.S., Kaye, J.Z., Head, J.W.I., Marion, G.M., Sassen, R., Crowly, J.K., Ballesteros, O.P., Grant, S.A. & Hogenboom, D.L. (2000). Europa's crust and ocean: origin, composition, and the prospects for life. Icarus 148, 226265.CrossRefGoogle Scholar
Karlo, J.H., Jorgenson, D.B. & Shineldecker, C.L. (1980). Sulfate minerals in snake river plain volcanoes. Northwest Sci. 54, 178182.Google Scholar
Kim, S., Rodgers, R.P. & Marshall, A.G. (2006). Truly “exact” mass: Elemental composition can be determined uniquely from molecular mass measurement at similar to 0.1 mDa accuracy for molecules up to similar to 500 Da. Int. J. Mass Spectrom. 251, 260265.CrossRefGoogle Scholar
Kish, M., Ohanessian, G. & Wesdemiotis, C. (2003). The Na+ affinities of a-amino acid: Side-chain substituent effects. Int. J. Mass Spectrom. 227, 509524.CrossRefGoogle Scholar
Klein, H. (1979). Viking mission and the search for life on Mars. Rev. Geophys. 17, 16551662.CrossRefGoogle Scholar
Knochenmuss, R., Dubois, F., Dale, M.J. & Zenobi, R. (1996). The matrix suppression effect and ionization mechanisms in matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 10, 871877.3.0.CO;2-R>CrossRefGoogle Scholar
Kotler, J.M., Hinman, N.W., Yan, B., Stoner, D.L. & Scott, J.R. (2008). Glycine Identification in natural jarosites using laser-desorption Fourier transform mass spectrometry: Implications for the search for life on Mars. Astrobiology 8, 253266.CrossRefGoogle ScholarPubMed
Kotler, J.M., Richardson, C.D., Hinman, N.W. & Scott, J.R. (2009). The stellar stew: Distribution of extraterrestrial organic compounds in the universe. In From Simple Molecules to primitive life, ed. Basiuk, V.A., pp. in press. American Scientific Publishers, Valencia, CA.Google Scholar
Liu, J., Tseng, K. & Lebrilla, C.B. (2001). A new external ionization multisample MALDI source for Fourier transform mass spectrometry. Int. J. Mass Spectrom. 204, 2329.CrossRefGoogle Scholar
Lou, X., Sinkeldam, R., van Houts, W., Nicolas, Y., Janssen, P., van Dongen, J., Vekemans, J. & Meijer, E. (2007). Double cation adduction in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of electron deficient anthraquinone derivatives. J. Mass Spectrom. 42, 293303.CrossRefGoogle ScholarPubMed
Mangold, N., Gendrin, A., Gondet, B., LeMouelic, S., Quantin, C., Ansan, V., Bibring, J., Langevin, Y., Masson, P. & Neukum, G. (2008). Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519543.CrossRefGoogle Scholar
Marshall, A.G. & Hendrickson, C.L. (2002). Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int. J. Mass Spectrom. 215, 5975.CrossRefGoogle Scholar
Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. (1998). Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 17, 135.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
McCord, T.B. et al. (1998). Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. Science 280, 12421245.CrossRefGoogle ScholarPubMed
McCord, T.B., Hansen, G.B. & Hibbitts, C.A. (2001). Hydrates salt minerals on Ganymede's surface: Evidence of an ocean below. Science 292, 15231525.CrossRefGoogle ScholarPubMed
McCord, T.B. et al. (1999). Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res. 104, 11 82711 851.CrossRefGoogle Scholar
McJunkin, T.R., Tremblay, P.L. & Scott, J.R. (2002). Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS). Journal of the Association for Laboratory Automation 7, 7683.Google Scholar
McKay, C.P. (2007). An approach to searching for life on Mars, Europa, and Enceladus. Space Sci. Rev. 135, 4954.CrossRefGoogle Scholar
McLafferty, F.W. & Tureček, F. (1993). Interpretation of Mass Spectra. University Science Books, Sausalito, CA.Google Scholar
Ohno, H., Igarashi, M. & Hondoh, T. (2006). Characteristics of salt inclusions in polar ice from Dome Fuji, East Antarctica. Geophys. Res. Lett. 33, L08501.1L08501.5.CrossRefGoogle Scholar
Orlando, T.M., McCord, T.B. & Grieves, G.A. (2005). The chemical nature of Europa surface material and the relation to a subsurface ocean. Icarus 177, 528533.CrossRefGoogle Scholar
Oro, J. (1979). Viking mission and the question of life on Mars- introduction. J. Mol. Evol. 14, 34.Google Scholar
Parnell, J., Cullen, D., Sims, M., Bowden, S., Cockell, C., Court, R., Ehrenfreund, P., Gaubert, F., Grant, W., Parro, V., Rohmer, M., Sephton, M., Stan-Lotter, H., Steele, A., Toporski, J., Vago, J. (2007). Searching for Life on Mars: Selection of Molecular Targets for ESA's Aurora ExoMars Mission. Astrobiology 7, 578604.CrossRefGoogle ScholarPubMed
Plekan, O., Feyer, V., Richter, R., Coreno, M. & Prince, K.C. (2008). Valence photoionization and photofragmentation of aromatic amino acids. Mol. Phys. 106, 11431153.CrossRefGoogle Scholar
Porat, I., Waters, B.W., Teng, Q. & Whitman, W.B. (2004). Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J. Bacteriol. 186, 49404950.CrossRefGoogle ScholarPubMed
Rankin, A.M., Wolff, E.W. & Martin, S. (2002). Frost flowers: Implicatoins for tropospheric chemistry and ice core interpretation. J. Geophys. Res. 107, 4683.Google Scholar
Richardson, C.D., Hinman, N.W., McJunkin, T.R., Kotler, J.M. & Scott, J.R. (2008). Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS). Geomicrobiol. J. 25, 432440.CrossRefGoogle Scholar
Ryzhov, V., Dunbar, R.C., Cerda, B. & Wesdemiotis, C. (2000). Cation-π effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase. Am. Soc. Mass Spectrom. 11, 10371046.CrossRefGoogle Scholar
Sack, T.M., Lapp, R.L., Gross, M.L. & Kimble, B.J. (1984). A method for the statistical evaluation of accurate mass measurement quality. Int. J. Mass Spectrom. Ion Processes 61, 191213.CrossRefGoogle Scholar
Scott, J.R., McJunkin, T.R. & Tremblay, P.L. (2003). Automated analysis of mass spectral data using fuzzy logic classification. Journal of the Association for Laboratory Automation 8, 6163.CrossRefGoogle Scholar
Scott, J.R. & Tremblay, P.L. (2002). Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer. Rev. Sci. Instrum. 73, 11081116.CrossRefGoogle Scholar
Scott, J.R., Yan, B. & Stoner, D.L. (2006). Spatially correlated spectroscopic analysis of microbe-mineral interactions. J. Microbiol Methods 67, 381384.CrossRefGoogle Scholar
Squyres, S.W. et al. (2004). The Opportunity rover's Athena science investigation at Meridiani Planum, Mars. Science 306, 16981703.CrossRefGoogle ScholarPubMed
Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I. & Nealson, K.H. (2001). Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Instrum. 72, 44524459.CrossRefGoogle Scholar
Tomlinson, M., Scott, J., Wilkins, C., Wright, J. & White, W. (1999). Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology. J. Mass Spectrom. 34, 958968.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Tosca, N.J. & McLennan, S.M. (2006). Chemical divides and evaporite assemblages on Mars. Earth Planet. Sci. Lett. 241, 2131.CrossRefGoogle Scholar
Van Vaeck, L., Adriaens, A. & Adams, F. (1998). Microscopical speciation analysis with laser microprobe mass spectrometry and static secondary ion mass spectrometry. Spectrochim Acta, Part B 53, 367378.CrossRefGoogle Scholar
Vorsa, V., Kono, T., Willey, K. & Winograd, N. (1999). Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via alpha-cleavage reactions. J. Phys. Chem. B 106, 78897895.CrossRefGoogle Scholar
Wiens, R.C., Burnett, D.S., Calaway, W.F., Hansen, C.S., Lykke, K.R. & Pellin, M.J. (1997). Sputtering products of sodium sulfate: Implications for Io's surface and for sodium-bearing molecules in the Io torus. Icarus 128, 386397.CrossRefGoogle Scholar
Willey, K., Vorsa, V., Braun, R. & Winograd, N. (1998). Postionization of molecules desorbed from surfaces by keV ion bombardment with femtosecond laser pulses. Rapid Commun. Mass Spectrom. 12, 12531260.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Wilson, K.R., Jimenez-Cruz, M., Nicolas, C., Belau, L., Leone, S.R. & Ahmed, M. (2006). Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and B-carotene. J. Phys. Chem. A 110, 21062113.CrossRefGoogle Scholar
Yan, B., Stoner, D.L., Kotler, J.M., Hinman, N.W. & Scott, J.R. (2007a). Detection of biosignatures by geomatrix-assisted laser desorption/Ionization (GALDI) mass spectrometry. Geomicrobiol. 24, 379385.CrossRefGoogle Scholar
Yan, B., Stoner, D.L. & Scott, J.R. (2007b). Direct LD-FTMS detection of mineral-associated PAHs and their influence on the detection of other organics. Talanta 72, 634641.CrossRefGoogle Scholar
Yao, J., Scott, J.R., Young, M.K. & Wilkins, C.L. (1998). Importance of matrix: analyte ratio for buffer tolerance using 2,5-dihydroxybenzoic acid as a matrix in matrix-assisted laser desorption/ionization Fourier transform mass spectrometry and matrix-assisted laser desorption/ionization time of flight. J. Am. Soc. Mass Spectrom. 9, 805813.CrossRefGoogle ScholarPubMed
Zhu, M., Xie, H., Guan, H. & Smith, R. (2006). Mineral and lithologic mapping of martian low albedo regions using OMEGA data. In Lunar and Planetary Science XXXVII, pp. 2173.Google Scholar
Zolotov, M.Y. & Shock, E.L. (2001). Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. 106, 32 81532 827.CrossRefGoogle Scholar