Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-31T11:43:10.850Z Has data issue: false hasContentIssue false

A next step in exoplanetology: exo-moons

Published online by Cambridge University Press:  05 January 2015

J. Schneider*
Affiliation:
Paris Observatory – LUTh, 5 place Jules Janssen, 92190 Meudon, France
V. Lainey
Affiliation:
Paris Observatory – IMCCE, CNRS, UPMC, Université Lille 1, Paris, France
J. Cabrera
Affiliation:
Institute of Planetology, German Aerospace Center (DLR), Rutherfordstr. 2, D-12489 Berlin, Germany

Abstract

The interest of exo-moons for Astrobiology is that they widen significantly the potential niches of exolife. In this paper, after a review of standard detection methods, we investigate new ways to characterize exo-moons and to use them to characterize their home planetary system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C.B. & Hamilton, D.P. (2006). Neptune's capture of its moon Triton in a binary-planet gravitational encounter. Nature 441(7090), 192194.CrossRefGoogle Scholar
Ardeberg, A. (2005a). Detection from reflex velocity measurements. In The Science Case for the European Extremely Large Telescope: The Next Step in Mankind's Quest for the Universe, ed. Hook, I.M., Opticon report. http://www-astro.physics.ox.ac.uk/~imh/ELT/Book/book.htmlGoogle Scholar
Ardeberg, A. (2005b). Moon-induced astrometric wobble of the planet. In The Science Case for the European Extremely Large Telescope: The Next Step in Mankind's Quest for the Universe, ed. Hook, I.M., Opticon report. http://www-astro.physics.ox.ac.uk/~imh/ELT/Book/book.htmlGoogle Scholar
Barnes, J. & Fortney, J. (2003). Measuring the oblateness and rotation of transiting extrasolar giant planet. Astrophys. J. 588, 545.CrossRefGoogle Scholar
Batalha, N., Rowe, J., Bryson, S., Barclay, Th., Burke, Ch., Caldwell, D., Christiansen, J., Mullaly, F., Thompson, S. & Brown, T. et al. (2013). Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data. Astrophys. J. Suppl 204, 24.CrossRefGoogle Scholar
Borucki, W., Koch, D., Batalha, N., Bryson, S., Rowe, J., Fressin, F., Torres, G., Caldwell, D., Christensen-Dalsgaard, J. & Cochran, W. et al. (2012). Astrophys. J. 745, 120.CrossRefGoogle Scholar
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W. & Burrows, A. (2001). Astrophys. J. 552, 699.CrossRefGoogle Scholar
Cabrera, J. & Schneider, J. (2007). Detecting companions to extrasolar planets using mutual events. Astron. Astrophys. 464, 1133.CrossRefGoogle Scholar
Canup, R. (2010). Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite. Nature 468(7326), 943–926.CrossRefGoogle ScholarPubMed
Canup, R. & Ward, W. (2002). Formation of the Galilean satellites: conditions of accretion. Astron. J. 124, 3404.Google Scholar
Canup, R. & Ward, W. (2006). A common mass scaling for satellite systems of gaseous planets. Nature 441, 834.CrossRefGoogle ScholarPubMed
Charnoz, S., Salomon, J. & Crida, A. (2010). The recent formation of Saturn's moonlets from viscous spreading of the main rings. Nature 465, 752.Google Scholar
Charnoz, S., Crida, A., Castillo-Rogez, J., Lainey, V., Dones, L., Karatekin, Ö., Tobie, G., Mathis, S., Le Poncin-Lafitte, Ch. & Salmon, J. et al. (2011). Accretion of Saturn's mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus 216, 535.CrossRefGoogle Scholar
Colwell, J.E., Esposito, L.W. & Bundy, D. (2000) Fragmentation rates of small satellites in the outer solar system. J. Geophys. Res. 105(17), 589599.Google Scholar
Crida, A. & Charnoz, S. (2012). Formation of regular satellites from ancient massive rings in the solar system. Science 338, 1196.CrossRefGoogle ScholarPubMed
Deeg., H., Moutou, C., Erikson, A., Csizmadia, Sz., Tingley, B., Barge, P., Bruntt, H., Havel, M., Aigrain, S. & Almenara, J.-M. et al. (2010). Nature 464, 384.CrossRefGoogle Scholar
Duriez, L. (2002). Cours de Mécanique céleste classique, Laboratoire d'Astronomie de l'Université de Lille 1 et IMCCE de l'Observatoire de Paris. available at http://www.imcce.fr/fr/formations/cours/CoursMC_Duriez/mc/.Google Scholar
Forgan, D. & Kipping, D. (2013). Dynamical effects on the habitable zone for earth-like exomoons. Mon. Not. R. Astron. Soc. 432, 3138, accepted, arXiv: 1304.4377.Google Scholar
Goldreich, P. (1965). Inclination of satellite orbits about an oblate precessing planet. Astron. J. 70, 5.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435, 466469.Google Scholar
Gong, Y.-X., Zhou, J.-L., Xie, J.-W. & Wu, X.-M. (2013). The effect of planet–planet scattering on the survival of exomoons. Astrophys. J. Lett. 769, L14.CrossRefGoogle Scholar
Gurfil, P., Lainey, V. & Efroimsky, M. (2007). Long-term evolution of orbits about a precessing oblate planet: 3. A semianalytical and a purely numerical approach. Celest. Mech. Dyn. Astron. 99(4), 261292.CrossRefGoogle Scholar
Han, C. & Han, W. (2002). On the Feasibility of Detecting Satellites of Extrasolar Planets via Microlensing. Astrophys. J. 580, 490.Google Scholar
Heller, R. & Barnes, R. (2014). Runaway greenhouse effect on exomoons due to irradiation from hot, young giant planets. Int. J. Astrobiol. In press, arXiv: 1311.02.92.Google Scholar
Huang, S. (1960). The sizes of habitable planets. Publ. Astron. Soc. Pac. 72, 489.CrossRefGoogle Scholar
Jewitt, D. & Haghighipour, N. (2007). Irregular satellites of the planets: products of capture in the early solar system. Ann. Rev. Astron. Astrophys. 45, 261.CrossRefGoogle Scholar
Kennedy, G. & Wyatt, M. (2011). Collisional evolution of irregular satellite swarms: detectable dust around Solar system and extrasolar planets. Mon. Not. R. Astron. Soc. 412, 2137.Google Scholar
Kipping, D. (2009a). Transit timing effects due to an exomoon. Mon. Not. R. Astron. Soc. 392, 181.Google Scholar
Kipping, D. (2009b). Transit timing effects due to an exomoon II. Mon. Not. R. Astron. Soc. 396, 1797.Google Scholar
Kipping, D. (2011). The Transits of Extrasolar Planets with Moons. Springer (Berlin).CrossRefGoogle Scholar
Kipping, D., Fossey, S., Campanella, G., Schneider, J. & Tinetti, G. et al. (2010). Pathways toward habitable moons. In Pathways Towards Habitable Planets (Barcelona, September 2009), ed. Vincent Coudé du, Foresto, Gelino, D.M. & Ribas, I., p. 139. Astronomical Society of the Pacific, San Francisco.Google Scholar
Kipping, D., Bakos, G., Buchhave, L., Nesvorny, D. & Schmitt, A. (2012). The Hunt for exomoons with Kepler (HEK): I description of a new observational project. Astrophys. J. 750, 115.CrossRefGoogle Scholar
Kipping, D., Forgan, D., Hartman, J., Nesvorny, D., Bakos, G., Schmitt, A. & Buchhave, L. et al. (2013a). The Hunt for Exomoons with Kepler (HEK): IV. A Search for Moons around Eight M-Dwarfs. Astrophys. J. 577, 134, submitted, arxiv: 1306.1530.Google Scholar
Kipping, D., Nesvorny, D., Buchhave, L., Hartman, J., Bakos, G. & Schmitt, A. (2014). The Hunt for exomoons with Kepler (HEK). IV. A search for moons around eight M Dwarfs. Astrophys. J. 784, 28.CrossRefGoogle Scholar
Kipping, D., Hartman, J., Buchhave, L., Schmitt, A., Bakos, G. & Nesvorny, D. (2013b). The Hunt for Exomoons with Kepler (HEK): II. Analysis of Seven Viable Satellite-Hosting Planet Candidates. Astrophys. J. 770, 101.CrossRefGoogle Scholar
Laskar, J., Joutel, F. & Robutel, P. (1993). Stabilization of the earth's obliquity by the moon. Nature 361, 615.Google Scholar
Latham, D., Stefanik, R., Mazeh, T., Mayor, M. & Burki, G. (1989). The unseen companion of HD114762 – a probable brown dwarf. Nature 339, 38.Google Scholar
Li, G. & Batygin, K. (2014). On the spin-axis dynamics of a moonless Earth. Astrophys. J. 790, 69.Google Scholar
Mayor, M. & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature 378, 355.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. (2005). Chaotic capture of Jupiter's Trojan asteroids in the early Solar System. Nature 435, 462465.Google Scholar
Ochiai, H., Nagasawa, M. & Ida, S. (2014). Extrasolar binary planets I: formation by tidal capture during planet–planet scattering. Astrophys. J. 790, 92, submitted, arXiv:astro-ph: 1406.6780.Google Scholar
Perets, H. & Payne, M. (2014). Formation of irregular and runaway of moons/exomoons through moon–moon scattering. Astrophys. J. submitted, arXiv: 1407.2619.Google Scholar
Peters, M.-A. & Turner, E. (2013). On the direct imaging of tidally heated exomoons. Astrophys. J. 769, 98.Google Scholar
Podsiadlowski, Ph., Rappaport, S., Fregeau, J. & Mardling, R. (2010). On the possibility of tidal formation of binary planets around ordinary stars. Astrophys. J. submitted, arXiv:astro-ph: 1007.1418.Google Scholar
Pont, F., Gilliland, R., Moutou, C., Charbonneau, D., Bouchy, F., Brown, T., Mayor, M., Queloz, D., Santos, N. & Udry, S. (2007). Hubble Space Telescope times-series photometry of the planetary transit of HD189733: no moon, no rings, starspots. Astron. Astrophys. 476, 1347.Google Scholar
Quirrenbach, A. et al. (2013). Toward habitable worlds beyond the solar system. White paper submitted to the ESA call for science themes. Available at http://sci.esa.int/cosmicvision/52030-white-papers-submitted-in-response-to-esas-call-for-science-themes-for-the-l2-and-l3-missions/#.Google Scholar
Reynolds, R., McKay, C. & Kasting, J. (1987). Europa, tidally heated oceans, and habitable zones around giant planets. Adv. Spa. Res. 7, 125.Google Scholar
Rosenblatt, P. & Charnoz, S. (2012). On the formation of the martian moons from a circum-martian accretion disk. Icarus 221, 806.CrossRefGoogle Scholar
Sartoretti, P. & Schneider, J. (1999). On the detection of satellites of extrasolar planets with the method of transits. Astron. Astrophys. Suppl. 134, 553.CrossRefGoogle Scholar
Sasaki, T. & Barnes, J. (2014). Longevity of moons around habitable planets. Int. J. Astrobiol. in press.CrossRefGoogle Scholar
Sasaki, T., Stewart, G. & Ida, S. (2010). Origin of the different architectures of the jovian and saturnian satellite systems. Astron. Astrophys. 714, 1052.Google Scholar
Scharf, C. (2006). The potential for tidally heated icy and temperate moons around exoplanets. Astron. Astrophys. 648, 1196.Google Scholar
Schneider, J. (1991). Occultation of stars by orbiting planets: a tool for the sounding of extrasolar planet atmospheres. In Frontiers of Life, pp. 471473. Tran Thanh Van, J., Tran Thanh Van, K., Mounoulou, J.C., Schneider, J. & McKay, C. ISBN 2-86332-125-0. Ediions Frontières. Publisher: Editions Frontières (Gif-sur-Yvette, France). Tran, J., Blois, France.Google Scholar
Schneider, J., Léger, A. & Fridlund, M. et al. (2010). The far future of exoplanet direct characterization. Astrobiology 10, 121.CrossRefGoogle ScholarPubMed
Schneider, J., Dedieu, C., Lesidaner, P., Savalle, R. & Zolothukin, I. (2011). Defining and cataloging exoplanets: the exoplanet. Eu database. Astron. Astrophys. 532, A79.Google Scholar
Simon, A., Szabo, Gy., SzatMary, K. & Kiss, L. et al. (2010). Methods for exomoons: combining transit photometry and the Rossiter–McLaughlin effect. Mon. Not. R. Astron. Soc. 406, 2038.Google Scholar
Skowron, J., Udalski, A., Szymanski, M., Kubiak, M., Pietrzynski, G., Soszynski, I., Poleski, R., Ulacsyk, K. & Pietrukowicz, P. & Kozlowski, Sz. et al. (2013). New method to measure proper motions of microlensed sources: application to candidate free-floating-planet event MOA-2011-BLG-262. Astrophys. J. Lett. submitted, arXiv: astro-ph/1312.7297.Google Scholar
Snellen, I., de Kok, R., de Mooij, E. & Albrecht, S. (2010). The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049.Google Scholar
Szabo, R., Szabo, Gy., Dalya, G., Simon, A., Hodosan, G. & Simon, L. (2013). Multiple planets or exomoons in Kepler hot Jupiter systems with transit timing variations? Astron. Astrophys. 553, 17.CrossRefGoogle Scholar
Touma, J. & Wisdom, J. (1993). The chaotic obliquity of Mars. Science 259(5099), 12941297.CrossRefGoogle ScholarPubMed
Triaud, A.H.M.J., Queloz, D. & Bouchy, F. et al. (2009). The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b. Astron. Astrophys. 506, 377.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459461.Google Scholar
Ward, P. & Brownlee, D. (2000). Rare Earth. Why Life is Uncommon in the Universe. Springer (New York). Chap 10.Google Scholar
Williams, D. (2013). Capture of terrestrial-sized moons by gas giant planets. Astrobiology 13, 315.Google Scholar
Williams, D. & Knacke, R. (2004). Looking for planetary moons in the spectra of distant Jupiters. Astrobiology 4, 400.CrossRefGoogle ScholarPubMed
Williams, D., Kasting, J. & Wade, R. (1997). Habitable moons around extrasolar giant planets. Nature 385, 234.Google Scholar
Wolszczan, A. & Frail, . (1992). A planetary system around the millisecond pulsar PSR1257+12. Nature 355, 145.Google Scholar
Wordsworth, R. & Pierrehumbert, R. (2014). Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20, arXiv: 1403.2713.CrossRefGoogle Scholar
Wyatt, M., Booth, M., Payne, M. & Churcher, L. (2010). Collisional evolution of eccentric planetesimal swarms. Mon. Not. R. Astron. Soc. 402, 657.Google Scholar