Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T02:00:16.243Z Has data issue: false hasContentIssue false

Northern hydrilla (Hydrilla verticillata ssp. lithuanica): discovery and establishment outside the Connecticut River

Published online by Cambridge University Press:  16 February 2024

Jeremiah R. Foley IV*
Affiliation:
Assistant Agricultural Scientist II, Connecticut Agricultural Experiment Station, Department of Environmental Science and Forestry, New Haven, CT, USA
Summer E. Stebbins
Affiliation:
Agricultural Research Technician II, Connecticut Agricultural Experiment Station, Department of Environmental Science and Forestry, New Haven, CT, USA
Riley Doherty
Affiliation:
Agricultural Research Technician I, Connecticut Agricultural Experiment Station, Department of Environmental Science and Forestry, New Haven, CT, USA
Nicholas P. Tippery
Affiliation:
Professor, Department of Biological Sciences, University of Wisconsin–Whitewater, Whitewater, WI, USA
Gregory J. Bugbee
Affiliation:
Associate Agricultural Scientist, Connecticut Agricultural Experiment Station, Department of Environmental Science and Forestry, New Haven, CT, USA
*
Corresponding author: Jeremiah R. Foley IV; Email: Jeremiah.Foley@ct.gov

Abstract

Hydrilla [Hydrilla verticillata (L. f.) Royle], an invasive aquatic weed, has had a rich introduction history into the United States, with multiple subspecies being introduced since the 1960s. The most recent occurred before 2016, when northern hydrilla (Hydrilla verticillata ssp. lithuanica) was discovered in the Connecticut River. By 2021, following a 3-yr survey from Agawam, MA, to the Long Island Sound by the Connecticut Agricultural Experiment Station Office of Aquatic Invasive Species, H. verticillata ssp. lithuanica was found in more than 113 km of the river, occupying 344 ha. Since this survey, there has been concern that H. verticillata ssp. lithuanica would spread to nearby waterbodies and have a significant negative impact. Here, we report the first documented spread and establishment of H. verticillata ssp. lithuanica from the Connecticut River to five waterbodies in Connecticut and one in Massachusetts. Of the eight sites where H. verticillata observations were made, 75% (n = 6) were confirmed to be H. verticillata ssp. lithuanica and 25% (n = 2) to be Hydrilla verticillata ssp. peregrina (wandering hydrilla). Except for one site, all six locations infested with H. verticillata ssp. lithuanica provide watercraft access through public or private boat ramps. The authors also postulate on the mechanisms facilitating the spread and establishment of this subspecies.

Type
Note
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Rob J. Richardson, North Carolina State

References

Balciunas, JK, Grodowitz, MJ, Cofrancesco, AF, Shearer, JF (2002) H. verticillata . Pages 91114 in van Driesche, RG, Lyon, S, Blossey, B, Hoddle, MS, Reardon, R, eds. Biological Control of Invasive Plants in the Eastern United States. Morgantown, WV: USDA Forest Service Google Scholar
Baldwin, BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:316 CrossRefGoogle ScholarPubMed
Blackburn, RD, Weldon, LW, Yeo, RR, Taylor, TM (1969). Identification and distribution of certain similar-appearing submersed aquatic weeds in Florida. Hyacinth Control Journal (now the Journal of Aquatic Plant Management), 8: 1721 Google Scholar
Bugbee, GJ, Stebbins, SE (2021) Connecticut River Gateway Conservation Zone: Invasive Aquatic Plant Survey—Aquatic Plant Management Options 2019. New Haven: Connecticut Agricultural Experiment Station Bulletin 1072. 122 pGoogle Scholar
Bugbee, GJ, Stebbins, SE (2022) Connecticut River Middle and Upper Sections: East Haddam, CT to Agawam, MA. New Haven: Connecticut Agricultural Experiment Station Bulletin 1084. 108 pGoogle Scholar
Cheng, T, Xu, C, Lei, L, Li, C, Zhang, Y, Zhou, S (2016) Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour 16:138149 CrossRefGoogle ScholarPubMed
Doyle, JJ, Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1115 Google Scholar
Gettys, LA, Enloe, SF (2016) H. verticillata: Florida’s Worst Submersed Weed. SS-AGR-400. Gainesville: UF/IFAS Extension. 7 pGoogle Scholar
Haight, RG, Kinsley, AC, Kao, S, Yemshanov, D, Phelps, NDB (2021) Optimizing the location of watercraft inspections stations to slow the spread of aquatic invasive species. Biol Invasions 23:39073919 CrossRefGoogle Scholar
Haller, WT, Sutton, DL (1975) Community structure and competition between H. verticillata and Vallisneria. Hyacinth Control J 13: 48–50Google Scholar
Hiatt, D, Serbesoff-King, K, Lieurance, D, Gordon, D, Flory, SL (2019) Allocation of invasive plant management expenditures for conservation: lessons from Florida, USA. Conserv Sci Pract 1:51 CrossRefGoogle Scholar
Johnson, LE, Bossenbroek, JM, Kraft, CE (2006) Patterns and pathways in the post-establishment spread of non-indigenous aquatic species: the slowing invasion of North American inland lakes by the zebra mussel. Biol Invasions 8:475489 CrossRefGoogle Scholar
Johnstone, LM, Coffey, BT, Howard-Williams, C (1985) The role of recreational boat traffic in interlake dispersal of macrophytes: a New Zealand case study. J Environ Manag 20:263279 Google Scholar
June-Wells, M, Vibrancy, CR, Gibbons, J, Bugbee, G (2012) The aquarium trade: a potential risk for nonnative plant introductions in Connecticut, U.S.A. Lake Reserv Manag 28:200205 CrossRefGoogle Scholar
Langeland, KA (1996) H. verticillata (LF) Royle (Hydrocharitaceae), “the perfect aquatic weed.” Castanea 61:293304 Google Scholar
Les, DH, Mehroff, LJ, Cleland, MA, Gabel, JD (1997) Hydrilla verticillata (Hydrocharitaceae) in Connecticut. J Aquat Plant Manage 35:1014 Google Scholar
Maddison, WP, Maddison, DR (2023) Mesquite: A Modular System for Evolutionary Analysis. Version 3.81. http://www.mesquiteproject.org. Accessed December 21, 2023Google Scholar
Madeira, PT, Jacono, CC, Van, TK (2000) Monitoring hydrilla using two RAPD procedures and the nonindigenous aquatic species database. J Aquat Plant Manag 38:3340 Google Scholar
Madeira, PT, Van, TK, Center, TD (2004) An improved molecular tool for distinguishing monoecious and dioecious hydrilla. J Aquat Plant Manag 42:2832 Google Scholar
Madeira, PT, Van, TK, Steward, KK, Schnell, RJ (1997) Random amplified polymorphic DNA analysis of the phenetic relationships among worldwide accessions of Hydrilla verticillata . Aquat Bot 59:217236 CrossRefGoogle Scholar
Milon, JW, Yingling, J, Reynolds, JE (1986) An Economic Analysis of the Benefits of Aquatic Weed Control in North-Central Florida, Economics Report No. 113, Food and Resource Economics, Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611. 52 ppGoogle Scholar
Mohit, S, Johnson, TB, Arnott, SE (2021) Recreational watercraft decontamination: Can current recommendations reduce aquatic invasive species spread? Manag Biol Invasions 12:148164. https://doi.org/10.3391/mbi.2021.12.1.10 CrossRefGoogle Scholar
Padilla, D, Williams, S (2004) Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ 2:131138 CrossRefGoogle Scholar
Rothlisberger, JD, Chadderton, WL, McNulty, J, Lodge, DM (2010) Aquatic invasive species transport via trailered boats: what is being moved, who is moving it, and what can be done. J Fish 35:121132 CrossRefGoogle Scholar
Sanger, F, Nicklen, S, Coulson, AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:54635467 CrossRefGoogle ScholarPubMed
Steward, KK, Van, TK (1987) Comparative studies of monoecious and dioecious hydrilla (Hydrilla verticillata) biotypes. Weed Sci 35:204210 CrossRefGoogle Scholar
Steward, KK, Van, TK, Carter, V, Pieterse, AH (1984) Hydrilla invades Washington, DC and the Potomac. Am J Bot 71:162163 CrossRefGoogle Scholar
Tippery, NP (2023) Subspecies classification of Hydrilla verticillata (Hydrocharitaceae). J Bot Res Inst Texas 17:401412 CrossRefGoogle Scholar
Tippery, NP, Bugbee, GJ, Stebbins, SE (2020) Evidence for a genetically distinct strain of introduced H. verticillata (Hydrocharitaceae) in North America. J Aquat Plant Manag 58:16 Google Scholar
True-Meadows, S, Haug, EJ, Richardson, RJ (2016) Monoecious hydrilla – a review of the literature. J Aquat Plant Manag 54:111 Google Scholar
Weber, MA, Wainger, LA, Harms, NE, Nesslage, GM (2020) The economic value of research in managing invasive H. verticillata in Florida public lakes. Lake Reserv Manag 37:6376 CrossRefGoogle Scholar
Wilde, SB, Johansen, JR, Wilde, HD, Jiang, P, Bartelme, B, Haynie, RS (2014) Aetokthonos hydrillicola gen. et sp. nov.: epiphytic cyanobacteria on invasive aquatic plants implicated in avian vacuolar myelinopathy. Phytotaxa 181:243260 CrossRefGoogle Scholar
Wilde, SB, Murphy, TM, Hope, CP, Habrun, SK, Kempton, J, Birrenkott, A, Wiley, F, Bowerman, WW, Lewitus, AJ (2005) Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ Toxicol 20:348353 CrossRefGoogle Scholar