Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T04:53:45.288Z Has data issue: false hasContentIssue false

10 Pre-clinical studies of sotagliflozin in hypertrophic cardiomyopathy

Published online by Cambridge University Press:  03 April 2024

Rebecca Taichman
Affiliation:
Perelman School of Medicine at the University of Pennsylvania
Benjamin Lee
Affiliation:
Perelman School of Medicine at the University of Pennsylvania
Kenneth Margulies
Affiliation:
Perelman School of Medicine at the University of Pennsylvania
Sharlene Day
Affiliation:
Perelman School of Medicine at the University of Pennsylvania
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: Study the regulatory role of sodium glucose co-transporter 1 (SGLT1) in cardiomyocytes and the therapeutic potential of sotagliflozin in hypertrophic cardiomyopathy (HCM) by (a) quantifying SGLT1 expression in HCM and (b) examining the impact of sotagliflozin on cardiac mechanics. METHODS/STUDY POPULATION: * Use Western Blot in cardiac tissue from HCM and non-HCM patients and pre-existing RNA seq and proteomics datasets to quantify SGLT1 levels in HCM. Hypothesis: SGLT1 is upregulated in HCM * Determine how SGLT1/2 inhibition by sotagliflozin will affect cardiac mechanics using living myocardial slice (LMS) preparations. A vibratome creates 200um-thick slices from (a) failing HCM heart explants, (b) septal myectomy samples from HCM patients, and (c) nonfailing rejected donor hearts. LMS are mounted on a force transducer and work-loops are stimulated under varying pre- and after-loads. Collecting baseline and post-drug work loops allows each slice to function as its own control. Hypothesis: sotagliflozin will improve diastolic mechanics by reducing stiffness in the end-diastolic pressure-volume relationship RESULTS/ANTICIPATED RESULTS: * Preliminary results from RNA seq data indicate that SLC5A1 mRNA (encoding gene for SGLT1) is significantly decreased in HCM. No proteomics study examined thus far has detected SLC5A1, indicating that overall SGLT1 levels in cardiac tissue are quite low. We will examine SGLT1 levels in our own HCM and non-HCM tissue samples with both mass-spectrometry and Western Blot. * We analyze six slices from each heart and expect 15 donor hearts and 15 HCM hearts/myectomy samples. We visualize the work loop by plotting stress/strain. Stress/strain at mitral valve closure represents exponential end diastolic pressure-volume relationship; Stress/strain at aortic valve closure represents linear end systolic pressure volume relationship. A two-sample paired t-test will compare change in stiffness and elastance. DISCUSSION/SIGNIFICANCE: This project contributes to a growing body of research surrounding the currently unknown cardioprotective mechanism of SGLT 1/2 inhibitors, furthers the technique of using living myocardial slices to study cardiac mechanics, and supports a trial examining sotagliflozin in HCM, for which disease modifying therapy remains a prevailing unmet need.

Type
Biostatistics, Epidemiology, and Research Design
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2024. The Association for Clinical and Translational Science