Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-18T18:44:39.545Z Has data issue: false hasContentIssue false

4089 Clinical Implementation of Monte Carlo Dose Calculation for Patient-Specific Radiotherapy Quality Assurance

Published online by Cambridge University Press:  29 July 2020

Holly Marie Parenica
Affiliation:
University of Texas Health Science Center San Antonio
Christopher Kabat
Affiliation:
University of Texas Health Science Center San Antonio
Pamela Myers
Affiliation:
University of Texas Health Science Center San Antonio
Neil Kirby
Affiliation:
University of Texas Health Science Center San Antonio
Pavlos Papaconstadopoulos
Affiliation:
Netherlands Cancer Institute
Nikos Papanikolaou
Affiliation:
University of Texas Health Science Center San Antonio
Sotirios Stathakis
Affiliation:
University of Texas Health Science Center San Antonio
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: The Monte Carlo dose calculation method is often considered the “gold standard” for patient dose calculations and can be as radiation dose measurements. Our study aims to develop a true Monte Carlo model that can be implemented in our clinic as part of our routine patient-specific quality assurance. METHODS/STUDY POPULATION: We have configured and validated a model of one of our linear accelerators used for radiation therapy treatments using the EGSnrc Monte Carlo simulation software. Measured dosimetric data was obtained from the linear accelerator and was used as the standard to compare the doses calculated with our model in EGSnrc. We will compare dose calculations between commercial treatment planning systems, the EGSnrc Monte Carlo model, and patient-specific measurements. We will implement the Monte Carlo model in our clinic for routine second-checks of patient plans, and to recalculate plans delivered to patients using machine log files. RESULTS/ANTICIPATED RESULTS: Our Monte Carlo model is within 1% agreement with our measured dosimetric data, and is an accurate representation of our linear accelerators used for patient treatments. With this high level of accuracy, we have begun simulating more complex patient treatment geometries, and expect the level of accuracy to be within 1% of measured data. We believe the Monte Carlo calculation based on machine log files will correlate with patient-specific QA analysis and results. The Monte Carlo model will be a useful tool in improving our patient-specific quality assurance protocol and can be utilized in further research. DISCUSSION/SIGNIFICANCE OF IMPACT: This work can be implemented directly in clinical practice to ensure patient doses are calculated as accurately as possible. These methods can be used by clinics who do not have access to more advanced dose calculation software, ensuring accuracy for all patients undergoing radiotherapy treatments.

Type
Precision Medicine
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2020