Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-27T14:11:36.938Z Has data issue: false hasContentIssue false

Characterization of very-large-scale motions in supersonic and hypersonic turbulent boundary layers

Published online by Cambridge University Press:  26 January 2024

Ming Yu
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
SiWei Dong
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
QiLong Guo
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
ZhiGong Tang
Affiliation:
China Aerodynamics Research and Development Center, Mianyang 621000, PR China
XianXu Yuan*
Affiliation:
State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
ChunXiao Xu*
Affiliation:
Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: yuanxianxu@cardc.cn, xucx@tsinghua.edu.cn
Email addresses for correspondence: yuanxianxu@cardc.cn, xucx@tsinghua.edu.cn

Abstract

Very-large-scale motions are commonly observed in moderate- and high-Reynolds-number wall turbulence, constituting a considerable portion of the Reynolds stress and skin friction. This study aims to investigate the behaviour of these motions in high-speed and high-Reynolds-number turbulent boundary layers at varying Mach numbers. With the aid of high-precision numerical simulations, numerical experiments and theoretical analysis, it is demonstrated that the very-large-scale motions are weakened in high-Mach-number turbulence at the same friction Reynolds numbers, leading to the reduction in turbulent kinetic energy in the outer region. Conversely, the lower wall temperature enhances the very-large-scale motions but shortens the scale separation between the structures in the near-wall and outer regions.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizard, F., Pirozzoli, S., Bernardini, M. & Grasso, F. 2015 Optimal transient growth in compressible turbulent boundary layers. J. Fluid Mech. 770, 124155.CrossRefGoogle Scholar
Baars, W.J. & Marusic, I. 2020 a Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.Google Scholar
Baars, W.J. & Marusic, I. 2020 b Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and $A_1$. J. Fluid Mech. 882, A26.CrossRefGoogle Scholar
Bernardini, M., Modesti, D., Salvadore, F. & Pirozzoli, S. 2021 STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows. Comput. Phys. Commun. 263, 107906.Google Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.CrossRefGoogle Scholar
Brandt, L. 2014 The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids) 47, 8096.Google Scholar
Bross, M., Scharnowski, S. & Kähler, C.J. 2021 Large-scale coherent structures in compressible turbulent boundary layers. J. Fluid Mech. 911, A2.Google Scholar
Chen, X. & She, Z.S. 2016 Analytic prediction for planar turbulent boundary layers. Sci. China Phys. Mech. 59, 17.Google Scholar
Chen, X. & Sreenivasan, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall flows. J. Fluid Mech. 908, R3.CrossRefGoogle Scholar
Chen, X.L., Cheng, C., Fu, L. & Gan, J.P. 2023 Linear response analysis of supersonic turbulent channel flows with a large parameter space. J. Fluid Mech. 962, A7.Google Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.Google Scholar
Dawson, S.T.M. & McKeon, B.J. 2020 Prediction of resolvent mode shapes in supersonic turbulent boundary layers. Intl J. Heat Fluid Flow 85, 108677.Google Scholar
De Vanna, F., Baldan, G., Picano, F. & Benini, E. 2023 Effect of convective schemes in wall-resolved and wall-modeled LES of compressible wall turbulence. Comput. Fluids 250, 105710.CrossRefGoogle Scholar
Del Alamo, J.C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.Google Scholar
Duan, L., Beekman, I. & Martin, M. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Duan, L., Beekman, I. & Martin, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.Google Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.Google Scholar
Ganapathisubramani, B., Clemens, N.T. & Dolling, D.S. 2006 Large-scale motions in a supersonic turbulent boundary layer. J. Fluid Mech. 556, 271282.Google Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. 118 (34), e2111144118.Google Scholar
Huang, J., Duan, L. & Choudhari, M.M. 2022 Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number. J. Fluid Mech. 937, A3.Google Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.Google Scholar
Hwang, Y. 2013 Near-wall turbulent fluctuations in the absence of wide outer motions. J. Fluid Mech. 723, 264288.CrossRefGoogle Scholar
Hwang, Y.Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.Google Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.Google Scholar
Kokkinakis, I.W. & Drikakis, D. 2015 Implicit large eddy simulation of weakly-compressible turbulent channel flow. Comput. Meth. Appl. Mech. Engng 287, 229261.Google Scholar
Leyva, I.A. 2017 The relentless pursuit of hypersonic flight. Phys. Today 70 (11), 3036.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_\tau = 4200$. Phys. Fluids 26 (1), 011702.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31 (3), 418428.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.Google Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.Google Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.Google Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.Google Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.Google Scholar
Modesti, D. & Pirozzoli, S. 2016 Reynolds and Mach number effects in compressible turbulent channel flow. Intl J. Heat Fluid Flow 59, 3349.Google Scholar
Modesti, D. & Pirozzoli, S. 2019 Direct numerical simulation of supersonic pipe flow at moderate Reynolds number. Intl J. Heat Fluid Flow 76, 100112.Google Scholar
Modesti, D., Pirozzoli, S. & Grasso, F. 2019 Direct numerical simulation of developed compressible flow in square ducts. Intl J. Heat Fluid Flow 76, 130140.CrossRefGoogle Scholar
Pirozzoli, S. 2010 Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229 (19), 71807190.Google Scholar
Pirozzoli, S. 2011 Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163194.Google Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25 (2), 021704.Google Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361393.Google Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.Google Scholar
Ritos, K., Kokkinakis, I.W., Drikakis, D. & Spottswood, S.M. 2017 Implicit large eddy simulation of acoustic loading in supersonic turbulent boundary layers. Phys. Fluids 29 (4), 046101.Google Scholar
Segall, B.A., Shekhtman, D., Hameed, A., Chen, J.H. & Parziale, N.J. 2023 Profiles of streamwise velocity and fluctuations in a hypersonic turbulent boundary layer using acetone tagging velocimetry. Exp. Fluids 64 (6), 122.CrossRefGoogle Scholar
Shu, C.W. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (2), 439471.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.Google Scholar
Subrahmanyam, M.A., Cantwell, B.J. & Alonso, J.J. 2022 A universal velocity profile for turbulent wall flows including adverse pressure gradient boundary layers. J. Fluid Mech. 933, A16.Google Scholar
Theofilis, V., Pirozzoli, S. & Martin, P. 2022 Special issue on the fluid mechanics of hypersonic flight. Theor. Comput. Fluid Dyn. 36 (1), 18.Google Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.Google Scholar
Tu, G., Chen, J., Yuan, X., Yang, Q., Duan, M., Yang, Q., Duan, Y., Chen, X., Wan, B. & Xiang, X. 2021 Progress in flight tests of hypersonic boundary layer transition. Acta Mech. Sin. 37 (11), 15891609.Google Scholar
Volpiani, P.S., Iyer, P.S., Pirozzoli, S. & Larsson, J. 2020 Data-driven compressibility transformation for turbulent wall layers. Phys. Rev. Fluids 5 (5), 052602.CrossRefGoogle Scholar
Wang, H.N. 2022 Fluctuation generation at inlet and off-wall boundaries for eddy-resolving simulation of wall turbulence (in mandarin). PhD thesis, Tsinghua University.Google Scholar
Williams, O.J.H., Sahoo, D., Baumgartner, M.L. & Smits, A.J. 2018 Experiments on the structure and scaling of hypersonic turbulent boundary layers. J. Fluid Mech. 834, 237270.Google Scholar
Wray, A. 1990 Minimal storage time advancement schemes for spectral methods. Report No. MS 202, NASA Ames Research Center, California.Google Scholar
Yao, J. & Hussain, F. 2020 Turbulence statistics and coherent structures in compressible channel flow. Phys. Rev. Fluids 5 (8), 084603.Google Scholar
Yao, J. & Hussain, F. 2023 Study of compressible turbulent plane Couette flows via direct numerical simulation. J. Fluid Mech. 964, A29.CrossRefGoogle Scholar
Yin, G., Huang, W. & Xu, C. 2017 On near-wall turbulence in minimal flow units. Intl J. Heat Fluid Flow 65, 192199.CrossRefGoogle Scholar
Yu, M., Fu, Y.L., Tang, Z.G., Yuan, X.X. & Xu, C.X. 2023 Predicting near-wall turbulence with minimal flow units in compressible turbulent channel flows. Chin. J. Aeronaut. 36 (8), 24–31.Google Scholar
Yu, M., Liu, P.X., Fu, Y.L., Tang, Z.G. & Yuan, X.X. 2022 a Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. II. Spectra, correlation and nonlinear interactions. Phys. Fluids 34 (6), 065140.Google Scholar
Yu, M., Liu, P.X., Fu, Y.L., Tang, Z.G. & Yuan, X.X. 2022 b Wall shear stress, pressure, and heat flux fluctuations in compressible wall-bounded turbulence. Part I. One-point statistics. Phys. Fluids 34 (6), 065139.Google Scholar
Yu, M., Xu, C. & Pirozzoli, S. 2019 Genuine compressibility effects in wall-bounded turbulence. Phys. Rev. Fluids 4 (12), 123402.Google Scholar
Yu, M. & Xu, C.X. 2022 Predictive models for near-wall velocity and temperature fluctuations in supersonic wall-bounded turbulence. J. Fluid Mech. 937, A32.CrossRefGoogle Scholar
Yu, M., Xu, C.X. & Pirozzoli, S. 2020 Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Phys. Rev. Fluids 5 (11), 113401.Google Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.Google Scholar
Zhang, P.J.Y., Wan, Z.H., Liu, N.S., Sun, D.J. & Lu, X.Y. 2022 Wall-cooling effects on pressure fluctuations in compressible turbulent boundary layers from subsonic to hypersonic regimes. J. Fluid Mech. 946, A14.Google Scholar
Zhang, Y., Bi, W., Hussain, F. & She, Z. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.CrossRefGoogle Scholar