Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T02:30:33.364Z Has data issue: false hasContentIssue false

Early stage of bubble spreading in a viscous ambient liquid

Published online by Cambridge University Press:  07 June 2023

He Ming
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Jian Qin
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Peng Gao*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Email address for correspondence: gaopeng@ustc.edu.cn

Abstract

We investigate numerically the spreading dynamics of a bubble coming into contact with a smooth solid substrate in a viscous liquid. The substrate is partially wettable, and the singularity of the moving contact line is relieved by adopting the Navier-slip model. The Stokes equations are solved by employing a boundary element method coupled with adaptive mesh refinement. This allows us to realize sufficiently small slip lengths down to $O(10^{-5})$ in dimensionless form, which is crucial to resolve the local interface structures at the early stage of spreading. The results show that the early-stage spreading of the bubble is always characterized by the growth and propulsion of a dewetting liquid rim close to the contact line, while the macroscopic interface remains unchanged. The evolution of the contact line and the morphology of the rim depends on the wettability and the slip length, and a parametric investigation is performed. Based on mass conservation, a relation between the rim size and the spreading radius is established. We also propose an analytical prediction of the temporal variation in the contact line radius at the early stage of spreading, which is found to follow a logarithmically corrected linear relation rather than a pure power law. Moreover, the early stages of bubble spreading are qualitatively similar for two-dimensional and axisymmetric configurations.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarts, D.G.A.L., Lekkerkerker, H.N.W., Guo, H., Wegdam, G.H. & Bonn, D. 2005 Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95, 164503.10.1103/PhysRevLett.95.164503CrossRefGoogle ScholarPubMed
Alinovi, E. & Bottaro, A. 2018 A boundary element method for Stokes flows with interfaces. J. Comput. Phys. 356, 261281.10.1016/j.jcp.2017.12.004CrossRefGoogle Scholar
Anthony, C.R., Kamat, P.M., Thete, S.S., Munro, J.P., Lister, J.R., Harris, M.T. & Basaran, O.A. 2017 Scaling laws and dynamics of bubble coalescence. Phys. Rev. Fluids 2, 083601.10.1103/PhysRevFluids.2.083601CrossRefGoogle Scholar
Bazazi, P., Sanati-Nezhad, A. & Hejazi, S.H. 2018 Wetting dynamics in two-liquid systems: effect of the surrounding phase viscosity. Phys. Rev. E 97, 063104.CrossRefGoogle ScholarPubMed
Biance, A.L., Clanet, C. & Quéré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69, 016301.10.1103/PhysRevE.69.016301CrossRefGoogle ScholarPubMed
Bird, J.C., Mandre, S. & Stone, H.A. 2008 Short time dynamics of partial wetting. Phys. Rev. Lett. 100, 234501.CrossRefGoogle ScholarPubMed
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.10.1103/RevModPhys.81.739CrossRefGoogle Scholar
Chan, T.S., Kamal, C., Snoeijer, J.H., Sprittles, J.E. & Eggers, J. 2020 Cox–Voinov theory with slip. J. Fluid Mech. 900, A8.CrossRefGoogle Scholar
Chan, T.S., McGraw, J.D., Salez, T., Seemann, R. & Brinkmann, M. 2017 Morphological evolution of microscopic dewetting droplets with slip. J. Fluid Mech. 828, 271288.10.1017/jfm.2017.515CrossRefGoogle Scholar
Cox, R.G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Dussan, V.E.B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371400.CrossRefGoogle Scholar
Dussan, V.E.B. & Davis, S.H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
Eddi, A., Winkels, K.G. & Snoeijer, J.H. 2013 Short time dynamics of viscous drop spreading. Phys. Fluids 25, 013102.CrossRefGoogle Scholar
Edwards, A.M.J., Ledesma-Aguilar, R., Newton, M.I., Brown, C.V. & McHale, G. 2016 Not spreading in reverse: the dewetting of a liquid film into a single drop. Sci. Adv. 2, e1600183.CrossRefGoogle ScholarPubMed
Eggers, J. 2004 Hydrodynamic theory of forced dewetting. Phys. Rev. Lett. 93, 094502.CrossRefGoogle ScholarPubMed
Eggers, J. 2005 Existence of receding and advancing contact lines. Phys. Fluids 17, 082106.CrossRefGoogle Scholar
Eggers, J., Lister, J.R. & Stone, H.A. 1999 Coalescence of liquid drops. J. Fluid. Mech. 401, 293310.CrossRefGoogle Scholar
de Gennes, P.G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Hocking, L.M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36, 5569.CrossRefGoogle Scholar
Huh, C. & Scriven, L.E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Jose, B.M. & Cubaud, T. 2017 Role of viscosity coefficients during spreading and coalescence of droplets in liquids. Phys. Rev. Fluids 2, 110601.CrossRefGoogle Scholar
Jose, B.M., Nandyala, D., Cubaud, T. & Colosqui, C.E. 2018 Physical ageing of spreading droplets in a viscous ambient phase. Sci. Rep. 8, 14159.CrossRefGoogle Scholar
Keeler, J.S., Lockerby, D.A., Kumar, S. & Sprittles, J.E. 2022 Stability and bifurcation of dynamic contact lines in two dimensions. J. Fluid Mech. 945, A34.CrossRefGoogle Scholar
LĀcis, U., Johansson, P., Fullana, T., Hess, B., Amberg, G., Bagheri, S. & Zaleski, S. 2020 Steady moving contact line of water over a no-slip substrate. Eur. Phys. J. 229, 18971921.Google Scholar
de Maleprade, H., Clanet, C. & Quéré, D. 2016 Spreading of bubbles after contacting the lower side of an aerophilic slide immersed in water. Phys. Rev. Lett. 117, 094501.CrossRefGoogle ScholarPubMed
McGraw, J.D., Chan, T.S., Maurer, S., Salez, T., Benzaquen, M., Raphaël, E., Brinkmann, M. & Jacobs, K. 2016 Slip-mediated dewetting of polymer microdroplets. Proc. Natl Acad. Sci. USA 113, 11681173.10.1073/pnas.1513565113CrossRefGoogle ScholarPubMed
Munro, J.P., Anthony, C.R., Basaran, O.A. & Lister, J.R. 2015 Thin-sheet flow between coalescing bubbles. J. Fluid Mech. 773, R3.CrossRefGoogle Scholar
Navier, C. 1823 Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr. 6, 389440.Google Scholar
Newcombe, G. & Ralston, J. 1992 Wetting dynamics studies on silica surfaces of varied hydrophobicity. Langmuir 8, 190196.CrossRefGoogle Scholar
Newcombe, G. & Ralston, J. 1994 Bubble spreading kinetics and mineral flotation. Miner. Engng 7, 889903.CrossRefGoogle Scholar
Paulsen, J.D., Carmigniani, R., Kannan, A., Burton, J.C. & Nagel, S.R. 2014 Coalescence of bubbles and drops in an outer fluid. Nat. Commun. 5, 3182.CrossRefGoogle Scholar
Phan, C.M., Nguyen, A.V. & Evans, G.M. 2003 Assessment of hydrodynamic and molecular-kinetic models applied to the motion of the dewetting contact line between a small bubble and a solid surface. Langmuir 19, 67966801.10.1021/la034038bCrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 2001 Expansion of a compressible gas bubble in Stokes flow. J. Fluid Mech. 442, 171189.10.1017/S0022112001004992CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC.CrossRefGoogle Scholar
Qian, T., Wang, X.-P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.CrossRefGoogle Scholar
Redon, C., Brochard-Wyart, F. & Rondelez, F. 1991 Dynamics of dewetting. Phys. Rev. Lett. 66, 715718.CrossRefGoogle ScholarPubMed
Sahimi, M. 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65, 13931534.10.1103/RevModPhys.65.1393CrossRefGoogle Scholar
Schleizer, A.D. & Bonnecaze, R.T. 1999 Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J. Fluid Mech. 383, 2954.CrossRefGoogle Scholar
Seppecher, P. 1996 Moving contact lines in the Cahn–Hilliard theory. Intl J. Engng Sci. 34, 977992.CrossRefGoogle Scholar
Shikhmurzaev, Y.D. 1993 The moving contact line on a smooth solid surface. Intl J. Multiphase Flow 19, 589610.10.1016/0301-9322(93)90090-HCrossRefGoogle Scholar
Snoeijer, J.H. 2006 Free-surface flows with large slopes: beyond lubrication theory. Phys. Fluids 18, 021701.10.1063/1.2171190CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.CrossRefGoogle Scholar
Snoeijer, J.H. & Eggers, J. 2010 Asymptotic analysis of the dewetting rim. Phys. Rev. E 82, 056314.CrossRefGoogle ScholarPubMed
Sprittles, J.E. 2015 Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769, 444481.10.1017/jfm.2015.121CrossRefGoogle Scholar
Sprittles, J.E. 2017 Kinetic effects in dynamic wetting. Phys. Rev. Lett. 118, 114502.CrossRefGoogle ScholarPubMed
Sprittles, J.E. & Shikhmurzaev, Y.D. 2012 Finite element framework for describing dynamic wetting phenomena. Intl J. Numer. Meth. Fluids 68, 12571298.CrossRefGoogle Scholar
Stechemesser, H. & Nguyen, A.V. 1998 Dewetting kinetics between a gas bubble and a flat solid surface and the effect of three-phase solid–gas–liquid contact line tension. Colloids Surf. A 142, 257264.CrossRefGoogle Scholar
Sui, Y., Ding, H. & Spelt, P.D.M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.CrossRefGoogle Scholar
Sui, Y. & Spelt, P.D.M. 2013 Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation. J. Fluid Mech. 715, 283313.CrossRefGoogle Scholar
Tanzosh, J., Manga, M. & Stone, H. 1992 Boundary integral methods for viscous free-boundary problems: deformation of single and multiple fluid–fluid interfaces. In Boundary Element Technology VII (ed. C.A. Brebbia & M.S. Ingber). Springer.CrossRefGoogle Scholar
Vandre, E., Carvalho, M.S. & Kumar, S. 2013 On the mechanism of wetting failure during fluid displacement along a moving substrate. Phys. Fluids 25, 102103.CrossRefGoogle Scholar
Vandre, E., Carvalho, M.S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.CrossRefGoogle Scholar
Voinov, O.V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714721.10.1007/BF01012963CrossRefGoogle Scholar
van der Vorst, H.A. 1992 Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631644.CrossRefGoogle Scholar
Wang, J., Zheng, Y., Nie, F.-Q., Zhai, J. & Jiang, L. 2009 Air bubble bursting effect of lotus leaf. Langmuir 25, 1412914134.CrossRefGoogle ScholarPubMed
Weinstein, S.J. & Ruschak, K.J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.CrossRefGoogle Scholar
Wijshoff, H. 2018 Drop dynamics in the inkjet printing process. Curr. Opin. Colloid Interface Sci. 36, 2027.CrossRefGoogle Scholar
Winkels, K.G., Weijs, J.H., Eddi, A. & Snoeijer, J.H. 2012 Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85, 055301.CrossRefGoogle ScholarPubMed
Wu, M., Cubaud, T. & Ho, C.-M. 2004 Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16, L51L54.CrossRefGoogle Scholar