Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-20T07:02:24.794Z Has data issue: false hasContentIssue false

Electrohydrodynamic-induced partial coalescence between a droplet and a liquid–air interface

Published online by Cambridge University Press:  22 May 2023

Hao Chen
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Wei Chen
Affiliation:
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Zhouping Yin*
Affiliation:
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
Haisheng Fang*
Affiliation:
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
*
 Email addresses for correspondence: hafang@hust.edu.cn, yinzhp@hust.edu.cn
 Email addresses for correspondence: hafang@hust.edu.cn, yinzhp@hust.edu.cn

Abstract

When a droplet coalesces with a flat liquid–air interface, a secondary drop may be left behind resulting in only a partial coalescence rather than complete coalescence. In this paper, we employ an arbitrary Lagrangian–Eulerian method to demonstrate that applying an electric field favours the occurrence of partial coalescence. To understand this phenomenon, we systematically study the effect of an external electric field on the coalescence process between a droplet and a liquid–air interface. In an electric field, the induced electric stresses can overcome the downward flow of the droplet, thus lifting it upwards. As a result, the positive Laplace pressure in the neck region squeezes the droplet towards pinch-off. We observe that both the initial neck expansion and neck shrinkage are suppressed by the electric field. These effects become weaker as the Ohnesorge number $Oh$ increases. Based on the scaling analysis, we report a critical Ohnesorge number $O{h_c} = 14.39{\varGamma ^{3/2}} + 0.029$ to quantify the transition from partial coalescence to complete coalescence in the presence of an electric field, where $\varGamma $ represents the dimensionless electric Bond number. Finally, a relationship between the secondary droplet size and the two key dimensionless numbers of $Oh$ and $\varGamma $ has been developed, which could be useful for producing droplets of desired sizes in microfluidic applications.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akartuna, I., Aubrecht, D.M., Kodger, T.E. & Weitz, D.A. 2015 Chemically induced coalescence in droplet-based microfluidics. Lab on a Chip 15, 11401144.CrossRefGoogle ScholarPubMed
Alhareth, A.A. & Thoroddsen, S.T. 2020 Partial coalescence of a drop on a larger-viscosity pool. Phys. Fluids 32, 122115.CrossRefGoogle Scholar
Anand, V., Juvekar, V.A. & Thaokar, R.M. 2020 Coalescence, partial coalescence, and noncoalescence of an aqueous drop at an oil-water interface under an electric field. Langmuir 36, 60516060.CrossRefGoogle ScholarPubMed
Anthony, C.R., Harris, M.T. & Basaran, O.A. 2020 Initial regime of drop coalescence. Phys. Rev. Fluids 5, 033608.CrossRefGoogle Scholar
Antonopoulou, E., Harlen, O.G., Walkley, M.A. & Kapur, N. 2020 Jetting behavior in drop-on-demand printing: laboratory experiments and numerical simulations. Phys. Rev. Fluids 5, 043603.CrossRefGoogle Scholar
Aris, R. 1990 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover.Google Scholar
Aryafar, H. & Kavehpour, H.P. 2006 Drop coalescence through planar surfaces. Phys. Fluids 18, 072105.CrossRefGoogle Scholar
Aryafar, H. & Kavehpour, P. 2007 Electrocoalescence. Phys. Fluids 19, 20062007.CrossRefGoogle Scholar
Aryafar, H. & Kavehpour, H.P. 2009 Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces. Langmuir 25, 12 46012 465.CrossRefGoogle ScholarPubMed
Blanchette, F. & Bigioni, T.P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2, 254257.CrossRefGoogle Scholar
Blanchette, F. & Bigioni, T.P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.CrossRefGoogle Scholar
Blanchette, F., Messio, L. & Bush, J.W.M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21, 072107.CrossRefGoogle Scholar
Charles, G.E. & Mason, S.G. 1960 The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105122.CrossRefGoogle Scholar
Collins, R.T., Jones, J.J., Harris, M.T. & Basaran, O.A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquidcones. Nat. Phys. 4, 149154.CrossRefGoogle Scholar
Constante-Amores, C.R., Batchvarov, A., Kahouadji, L., Shin, S., Chergui, J., Juric, D. & Matar, O.K. 2021 Role of surfactant-induced Marangoni stresses in drop-interface coalescence. J. Fluid Mech. 925, A15.CrossRefGoogle Scholar
Das, S.K., Dalal, A. & Tomar, G. 2021 Electrohydrodynamic-induced interactions between droplets. J. Fluid Mech. 915, A88.CrossRefGoogle Scholar
Deka, H., Biswas, G., Chakraborty, S. & Dalal, A. 2019 b Coalescence dynamics of unequal sized drops. Phys. Fluids 31, 012105.CrossRefGoogle Scholar
Deka, H., Biswas, G., Sahu, K.C., Kulkarni, Y. & Dalal, A. 2019 a Coalescence dynamics of a compound drop on a deep liquid pool. J. Fluid Mech. 866, R2.CrossRefGoogle Scholar
Deuflhard, P. 1974 A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289315.CrossRefGoogle Scholar
Eggers, J., Lister, J.R. & Stone, H.A. 1999 Coalescence of liquid drops. J. Fluid Mech. 401, 293310.CrossRefGoogle Scholar
Eow, J.S. & Ghadiri, M. 2003 a The behaviour of a liquid-liquid interface and drop-interface coalescence under the influence of an electric field. Colloids Surfaces A Physicochem. Engng Asp. 215, 101123.CrossRefGoogle Scholar
Eow, J.S. & Ghadiri, M. 2003 b Drop-drop coalescence in an electric field: the effects of applied electric field and electrode geometry. Colloids Surfaces A Physicochem. Engng Asp. 219, 253279.CrossRefGoogle Scholar
Eow, J.S., Ghadiri, M., Sharif, A.O. & Williams, T.J. 2001 Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding. Chem. Engng J. 84, 173192.CrossRefGoogle Scholar
Gilet, T., Mulleners, K., Lecomte, J.P., Vandewalle, N. & Dorbolo, S. 2007 Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303.CrossRefGoogle ScholarPubMed
Hamlin, B.S., Creasey, J.C. & Ristenpart, W.D. 2012 Electrically tunable partial coalescence of oppositely charged drops. Phys. Rev. Lett. 109, 094501.CrossRefGoogle ScholarPubMed
Herrada, M.A., López-Herrera, J.M., Gañán-Calvo, A.M., Vega, E.J., Montanero, J.M. & Popinet, S. 2012 Numerical simulation of electrospray in the cone-jet mode. Phys. Rev. E 86, 026305.CrossRefGoogle ScholarPubMed
Houssainy, S., Kabachek, S. & Kavehpour, H.P. 2020 Closed-form theoretical model of the secondary drop size in partial coalescence - capturing pertinent timescales and viscous forces. Phys. Fluids 32, 052101.CrossRefGoogle Scholar
Kirar, P.K., Alvarenga, K., Kolhe, P., Biswas, G. & Sahu, K.C. 2020 Coalescence of drops on the free-surface of a liquid pool at elevated temperatures. Phys. Fluids 32, 052103.CrossRefGoogle Scholar
Kjellgren, P. & Hyvärinen, J. 1998 An arbitrary Lagrangian-Eulerian finite element method. Comput. Mech. 21, 8190.CrossRefGoogle Scholar
Li, B., Wang, Z., Vivacqua, V., Ghadiri, M., Wang, J., Zhang, W., Wang, D., Liu, H., Sun, Z. & Wang, Z. 2020 Drop-interface electrocoalescence mode transition under a direct current electric field. Chem. Engng Sci. 213, 115360.CrossRefGoogle Scholar
Lohse, D. 2022 Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54, 349382.CrossRefGoogle Scholar
Lukyanets, A.S. & Kavehpour, H.P. 2008 Effect of electric fields on the rest time of coalescing drops. Appl. Phys. Lett. 93, 20062009.CrossRefGoogle Scholar
Martin, D.W. & Blanchette, F. 2015 Simulations of surfactant effects on the dynamics of coalescing drops and bubbles. Phys. Fluids 27, 012103.CrossRefGoogle Scholar
Martínez-Calvo, A., Rivero-Rodríguez, J., Scheid, B. & Sevilla, A. 2020 Natural break-up and satellite formation regimes of surfactant-laden liquid threads. J. Fluid Mech. 883, A35.CrossRefGoogle Scholar
Melcher, J.R. & Taylor, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.CrossRefGoogle Scholar
Mousavi, S.H., Ghadiri, M. & Buckley, M. 2014 Electro-coalescence of water drops in oils under pulsatile electric fields. Chem. Engng Sci. 120, 130142.CrossRefGoogle Scholar
Mousavichoubeh, M., Ghadiri, M. & Shariaty-Niassar, M. 2011 a Electro-coalescence of an aqueous droplet at an oil-water interface. Chem. Engng Process. Process Intensif. 50, 338344.CrossRefGoogle Scholar
Mousavichoubeh, M., Shariaty-Niassar, M. & Ghadiri, M. 2011 b The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil. Chem. Engng Sci. 66, 53305337.CrossRefGoogle Scholar
Munro, J.P., Anthony, C.R., Basaran, O.A. & Lister, J.R. 2015 Thin-sheet flow between coalescing bubbles. J. Fluid Mech. 773, R3.CrossRefGoogle Scholar
Nie, Q., Li, F., Ma, Q., Fang, H. & Yin, Z. 2021 Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. J. Fluid Mech. 925, A4.CrossRefGoogle Scholar
Pillai, R., Berry, J.D., Harvie, D.J.E. & Davidson, M.R. 2017 Electrophoretically mediated partial coalescence of a charged microdrop. Chem. Engng Sci. 169, 273283.CrossRefGoogle Scholar
Ponce-Torres, A., Rebollo-Munõz, N., Herrada, M.A., Ganãn-Calvo, A.M. & Montanero, J.M. 2018 The steady cone-jet mode of electrospraying close to the minimum volume stability limit. J. Fluid Mech. 857, 142172.CrossRefGoogle Scholar
Prabhu, V.M. 2021 Interfacial tension in polyelectrolyte systems exhibiting associative liquid–liquid phase separation. Curr. Opin. Colloid Interface Sci. 53, 101422.CrossRefGoogle Scholar
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid-liquid interface. J. Fluid Mech. 655, 72104.CrossRefGoogle Scholar
Reynolds, O. 1881 On the floating of drops on the surface of water depending only on the purity of the surface. Proc. Lit. Phil. Soc. Manchester 21, 12.Google Scholar
Sainath, K. & Ghosh, P. 2014 Electrical properties of silicone oil-water interface in the presence of ionic surfactants and salt: importance in the stability of oil-in-water emulsions. Chem. Engng Commun. 201, 16451663.CrossRefGoogle Scholar
Saville, D.A. 1997 Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.CrossRefGoogle Scholar
Scriven, L.E. 1960 Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem. Engng Sci. 12, 98108.CrossRefGoogle Scholar
Thoroddsen, S.T., Qian, B., Etoh, T.G. & Takehara, K. 2007 The initial coalescence of miscible drops. Phys. Fluids 19, 072110.CrossRefGoogle Scholar
Thoroddsen, S.T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12, 12651267.CrossRefGoogle Scholar
Tian, Y., Wang, H., Zhou, X., Xie, Z., Zhu, X., Chen, R., Ding, Y. & Liao, Q. 2022 How does the electric field make a droplet exhibit the ejection and rebound behaviour on a superhydrophobic surface? J. Fluid Mech. 941, A18.CrossRefGoogle Scholar
Wagoner, B.W., Vlahovska, P.M., Harris, M.T. & Basaran, O.A. 2021 Electrohydrodynamics of lenticular drops and equatorial streaming. J. Fluid Mech. 925, A36.CrossRefGoogle Scholar
Yeoh, O.H. 1993 Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66, 754771.CrossRefGoogle Scholar
Zhang, F.H., Li, E.Q. & Thoroddsen, S.T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102, 1316.CrossRefGoogle ScholarPubMed