Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-11T11:14:29.089Z Has data issue: false hasContentIssue false

Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles

Published online by Cambridge University Press:  16 June 2020

Pu Cui
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
A-Man Zhang*
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
Shi-Ping Wang
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
Yun-Long Liu
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, 150001, China
*
Email address for correspondence: zhangaman@hrbeu.edu.cn

Abstract

In this work ice breaking caused by a pair of interacting collapsing bubbles was studied by an experimental approach. The bubbles were generated by an underwater electric discharge simultaneously, positioned either horizontally or vertically below a floating ice plate and observed via high-speed photography. The bubble-induced shock waves, which turn out to be crucial to the fracturing of the ice, were visualized using a shadowgraph method and also measured using pressure transduces. Unique bubble behaviour was observed, including bubble coalescence, bubble splitting, inclined counter-jets and asymmetric toroidal bubble collapse. Bubble dynamic properties, such as jet speed, jet energy and bubble centre displacement, were measured. Shock wave emission and ice breaking capability of the two bubbles were investigated over a range of inter-bubble and bubble–boundary distances. Regions where the damaging potential of the bubble pair are strengthened or weakened were summarized and possible reasons for the variation in the ice breaking capability were analysed based on bubble morphology, jet characteristics and shock wave pressure. The findings may contribute to more efficient ice breaking and also inspire new ways to manipulate cavitation bubble damage.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaithambi, N., Singha, P., Dwivedi, M. & Singh, S. K. 2019 Hydrodynamic cavitation and its application in food and beverage industry: a review. J. Food Process Engng 42, e13144.CrossRefGoogle Scholar
Benjamin, T. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Blake, J., Robinson, P., Shima, A. & Tomita, Y. 1993 Interaction of two cavitation bubbles with a rigid boundary. J. Fluid Mech. 255, 707721.CrossRefGoogle Scholar
Bremond, N., Arora, M., Ohl, C.-D. & Lohse, D. 2006 Controlled multibubble surface cavitation. Phys. Rev. Lett. 96, 224501.CrossRefGoogle ScholarPubMed
Brennen, C. E.Cavitation and Bubble Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Brenner, M. P., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425484.CrossRefGoogle Scholar
Brett, J. M. & Yiannakopolous, G. 2008 A study of explosive effects in close proximity to a submerged cylinder. Intl J. Impact Engng 35, 206225.CrossRefGoogle Scholar
Brujan, E. A., Noda, T., Ishigami, A., Ogasawara, T. & Takahira, H. 2018 Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J. Fluid Mech. 841, 2849.CrossRefGoogle Scholar
Buogo, S. & Cannelli, G. B. 2002 Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J. Acoust. Soc. Am. 111, 25942600.CrossRefGoogle ScholarPubMed
Chahine, G. L. 1997 Numerical and experimental study of explosion bubble crown jetting behavior. Dynaflow, Inc. Tech. Rep. 96003-1.Google Scholar
Chahine, G. L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrasonics Sonochemistry 29, 528549.CrossRefGoogle Scholar
Chew, L. W., Klaseboer, E., Ohl, S.-W. & Khoo, B. C. 2011 Interaction of two differently sized oscillating bubbles in a free field. Phys. Rev. E 84, 066307.Google Scholar
Chew, L. W., Klaseboer, E., Ohl, S. W. & Khoo, B. C. 2013 Interaction of two oscillating bubbles near a rigid boundary. Exp. Therm. Fluid Sci. 44, 108113.Google Scholar
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13, 6976.CrossRefGoogle ScholarPubMed
Cox, E., Pearson, A., Blake, J. R. & Otto, S. R. 2004 Comparison of methods for modelling the behaviour of bubbles produced by marine seismic airguns. Geophys. Prospecting 52, 451477.CrossRefGoogle Scholar
Cui, P., Wang, Q., Wang, S. & Zhang, A. 2016 Experimental study on interaction and coalescence of synchronized multiple bubbles. Phys. Fluids 28, 012103.CrossRefGoogle Scholar
Cui, P., Zhang, A.-M., Wang, S. & Khoo, B. C. 2018 Ice breaking by a collapsing bubble. J. Fluid Mech. 841, 287309.CrossRefGoogle Scholar
de Graaf, K., Brandner, P. & Penesis, I. 2014 The pressure field generated by a seismic airgun. Exp. Therm. Fluid Sci. 55, 239249.Google Scholar
Fong, S. W., Adhikari, D., Klaseboer, E. & Khoo, B. C. 2009 Interactions of multiple spark-generated bubbles with phase differences. Exp. Fluids 46, 705724.CrossRefGoogle Scholar
Han, B., Köhler, K., Jungnickel, K., Mettin, R., Lauterborn, W. & Vogel, A. 2015 Dynamics of laser-induced bubble pairs. J. Fluid Mech. 771, 706742.CrossRefGoogle Scholar
Han, R., Li, S., Zhang, A. & Wang, Q. 2016 Modelling for three dimensional coalescence of two bubbles. Phys. Fluids 28, 062104.CrossRefGoogle Scholar
Hsiao, C.-T., Jayaprakash, A., Kapahi, A., Choi, J.-K. & Chahine, G. L. 2014 Modelling of material pitting from cavitation bubble collapse. J. Fluid Mech. 755, 142175.CrossRefGoogle Scholar
Hung, C. F. & Hwangfu, J. J. 2010 Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. J. Fluid Mech. 651, 5580.CrossRefGoogle Scholar
Jamaluddin, A. R., Ball, G. J., Turangan, C. & Leighton, T. G. 2011 The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy. J. Fluid Mech. 677, 305341.CrossRefGoogle Scholar
Jungnickel, K. & Vogel, A. 1994 Interaction of two laser-induced cavitation bubbles. In Bubble Dynamics and Interface Phenomena (ed. Blake, J. R., Boulton-Stone, J. M. & Thomas, N. H.), pp. 4753. Springer.CrossRefGoogle Scholar
Khoo, B. C., Adikhari, D., Fong, S. W. & Klaseboer, E. 2009 Multiple spark-generated bubble interactions. Mod. Phys. Lett. B 23, 229232.CrossRefGoogle Scholar
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.CrossRefGoogle Scholar
Lauterborn, W. & Thomas, K. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501.Google Scholar
Liu, Y., Sugiyama, K., Takagi, S. & Matsumoto, Y. 2012 Surface instability of an encapsulated bubble induced by an ultrasonic pressure wave. J. Fluid Mech. 691, 315340.CrossRefGoogle Scholar
Lohse, D., Schmitz, B. & Versluis, M. 2001 Snapping shrimp make flashing bubbles. Nature 413, 477478.CrossRefGoogle ScholarPubMed
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89, 074102.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., de Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006b Sonoporation from jetting cavitation bubbles. Biophys. J. 91, 42854295.CrossRefGoogle Scholar
Ohl, C. D., Kurz, T., Geisler, R., Lindau, O. & Lauterborn, W. 1999 Bubble dynamics, shock waves and sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 269294.CrossRefGoogle Scholar
Pearson, A., Cox, E., Blake, J. R. & Otto, S. R. 2004 Bubble interactions near a free surface. Engng Anal. Bound. Elem. 28, 295313.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Quinto-Su, P. A. & Ohl, C.-D. 2009 Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J. Fluid Mech. 633, 425435.CrossRefGoogle Scholar
Riska, K.Design of ice breaking ships. In Encyclopedia of Life Support Systems, The EOLSS International Editorial Council, UNESCO.Google Scholar
Rungsiyaphornrat, S., Klaseboer, E., Khoo, B. & Yeo, K. 2003 The merging of two gaseous bubbles with an application to underwater explosions. Comput. Fluids 32, 10491074.CrossRefGoogle Scholar
Sankin, G. N., Yuan, F. & Zhong, P. 2010 Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys. Rev. Lett. 105, 078101.CrossRefGoogle ScholarPubMed
Supponen, O., Obreschkow, D., Kobel, P., Tinguely, M., Dorsaz, N. & Farhat, M. 2017 Shock waves from nonspherical cavitation bubbles. Phys. Rev. Fluids 2, 093601.CrossRefGoogle Scholar
Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N. & Farhat, M. 2016 Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263293.CrossRefGoogle Scholar
Tomita, Y. & Sato, K. 2017 Pulsed jets driven by two interacting cavitation bubbles produced at different times. J. Fluid Mech. 819, 465493.CrossRefGoogle Scholar
Tomita, Y., Shima, A. & Sato, K. 1990 Dynamic behavior of two-laser-induced bubbles in water. Appl. Phys. Lett. 57, 234236.CrossRefGoogle Scholar
Tomita, Y., Shima, A., Tsubota, M. & Kano, I. 1994 An experimental investigation on bubble motion in liquid nitrogen. In Proceedings of 2nd International Symposium on Cavitation, Tokyo, pp. 311316.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Young, R. F. 1989 Cavitation. McGraw-Hill.Google Scholar
Zhang, Y., Zhang, Y. & Li, S. 2016 The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation. Ultrasonics Sonochemistry 29, 129145.CrossRefGoogle ScholarPubMed
Zhong, P., Zhou, Y. F. & Zhu, S. L. 2001 Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound Med. Biol. 27, 119134.CrossRefGoogle ScholarPubMed