Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T00:44:38.665Z Has data issue: false hasContentIssue false

Fluid entrapment during forced imbibition in a multidepth microfluidic chip with complex porous geometry

Published online by Cambridge University Press:  13 May 2024

Wenhai Lei
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
Wenbo Gong
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Xukang Lu
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
*
Email addresses for correspondence: moralwang@jhu.edu

Abstract

Understanding and controlling fluid entrapment during forced imbibition in porous media is crucial for many natural and industrial applications. However, the microscale physics and macroscopic consequences of fluid entrapment in these geometric-confined porous media remain poorly understood. Here, we introduce a novel multidepth microfluidic chip, which can mitigate the depth confinement of traditional two-dimensional (2-D) microfluidic chips and mimic the wide pore size distribution as natural-occurring three-dimensional (3-D) porous media. Based on microfluidic experiments and direct numerical simulations, we observe the fluid-entrapment scenarios and elucidate the underlying complex interaction between geometric confinement, capillary number and wettability. Increasing depth variation can promote fluid entrapment, whereas increasing capillary number and contact angle yield the opposite effect, which seemingly contradicts conventional expectations in traditional 2-D microfluidic chips. The fluid-entrapment scenario in depth-variable microfluidic chips stems from microscopic interfacial phenomena, classified as snap-off and bypass events. We provide theoretical analyses of these pore-scale events and validate corresponding phase diagrams numerically. It is shown that increasing depth variation triggers snap-off and bypass events. Conversely, a higher capillary number suppresses snap-off events under strong imbibition, and an increased contact angle inhibits bypass events under imbibition. These macroscopic imbibition patterns in microfluidic porous media can be linked with these pore-scale events by improved dynamic pore-network models. Our findings bridge the understanding of forced imbibition between 2-D and 3-D porous media and provide design principles for newly engineered porous media with respect to their desired imbibition behaviours.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, U., Ghosh, T., Aabdin, Z., Koneti, S., Xu, X., Holsteyns, F. & Mirsaidov, U. 2021 Dynamics of thin precursor film in wetting of nanopatterned surfaces. Proc. Natl Acad. Sci. USA 118 (38), e2108074118.CrossRefGoogle ScholarPubMed
Berberović, E., Van Hinsberg, N.P., Jakirlić, S., Roisman, I.V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79 (3), 036306.CrossRefGoogle ScholarPubMed
Berg, S., et al. 2013 Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl Acad. Sci. USA 110 (10), 37553759.CrossRefGoogle ScholarPubMed
Blunt, M.J. 2017 Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press.Google Scholar
Brackbill, J.U., Kothe, D.B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Browne, C.A., Huang, R.B., Zheng, C.W. & Datta, S.S. 2023 Homogenizing fluid transport in stratified porous media using an elastic flow instability. J. Fluid Mech. 963, A30.CrossRefGoogle Scholar
Cha, L., Xie, C., Feng, Q. & Balhoff, M. 2021 Geometric criteria for the snap-off of a non-wetting droplet in pore-throat channels with rectangular cross-sections. Water Resour. Res. 57 (7), e2020WR029476.CrossRefGoogle Scholar
Chatzis, I. & Dullien, F.A.L. 1983 Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J. Colloid Interface Sci. 91 (1) 199222.CrossRefGoogle Scholar
Chaudhary, K., Bayani Cardenas, M., Wolfe, W.W., Maisano, J.A., Ketcham, R.A. & Bennett, P.C. 2013 Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophys. Res. Lett. 40 (15), 38783882.CrossRefGoogle Scholar
Chomsurin, C. & Werth, C.J. 2003 Analysis of pore-scale nonaqueous phase liquid dissolution in etched silicon pore networks. Water Resour. Res. 39 (9), 1265.CrossRefGoogle Scholar
Cieplak, M. & Robbins, M.O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M.O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 1150811521.CrossRefGoogle ScholarPubMed
Concus, P. & Finn, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA 63 (2), 292.CrossRefGoogle Scholar
Craster, R.V. & Matar, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.CrossRefGoogle Scholar
Cybulski, O., Garstecki, P. & Grzybowski, B.A. 2019 Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. 15 (7), 706713.CrossRefGoogle Scholar
Dong, M. & Chatzis, I. 1995 The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci. 172 (2), 278288.CrossRefGoogle Scholar
Ferrari, A., Jimenez-Martinez, J., Borgne, T.L., Méheust, Y. & Lunati, I. 2015 Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resour. Res. 51 (3), 13811400.CrossRefGoogle Scholar
Ferrari, A. & Lunati, I. 2013 Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 1931.CrossRefGoogle Scholar
Gauglitz, P.A., St. Laurent, C.M. & Radkle, C.J. 1987 An experimental investigation of gas-bubble breakup in constricted square capillaries. J. Petrol. Tech. 39 (9), 11371146.CrossRefGoogle Scholar
Gostick, J.T. 2017 Versatile and efficient pore network extraction method using marker-based watershed segmentation. Phys. Rev. E 96 (2), 023307.CrossRefGoogle ScholarPubMed
Gu, Q., Liu, H. & Wu, L. 2021 Preferential imbibition in a dual-permeability pore network. J. Fluid Mech. 915, A138.CrossRefGoogle Scholar
He, B., Yang, S., Qin, Z., Wen, B. & Zhang, C. 2017 The roles of wettability and surface tension in droplet formation during inkjet printing. Sci. Rep. 7 (1), 11841.CrossRefGoogle ScholarPubMed
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.CrossRefGoogle ScholarPubMed
Hu, R., Lan, T., Wei, G.-J. & Chen, Y.-F. 2019 Phase diagram of quasi-static immiscible displacement in disordered porous media. J. Fluid Mech. 875, 448475.CrossRefGoogle Scholar
Hu, R., Wan, J., Kim, Y. & Tokunaga, T.K. 2017 Wettability impact on supercritical CO2 capillary trapping: pore-scale visualization and quantification. Water Resour. Res. 53 (8), 63776394.CrossRefGoogle Scholar
Hu, R., Wan, J., Yang, Z., Chen, Y.F. & Tokunaga, T. 2018 Wettability and flow rate impacts on immiscible displacement: a theoretical model. Geophys. Res. Lett. 45 (7), 30773086.CrossRefGoogle Scholar
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46 (1), 255272.CrossRefGoogle Scholar
Ju, Y., Gong, W. & Zheng, J. 2022 Effects of pore topology on immiscible fluid displacement: pore-scale lattice Boltzmann modelling and experiments using transparent 3D printed models. Intl J. Multiphase Flow 152, 104085.CrossRefGoogle Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de la Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.CrossRefGoogle Scholar
Lei, W., Gong, W. & Wang, M. 2023 a Wettability effect on displacement in disordered media under preferential flow conditions. J. Fluid Mech. 975, A33.CrossRefGoogle Scholar
Lei, W., Liu, T., Xie, C., Yang, H., Wu, T. & Wang, M. 2020 Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Engng 8 (4), 986998.CrossRefGoogle Scholar
Lei, W., Lu, X., Gong, W. & Wang, M. 2023 c Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth-variable microfluidic porous media. Proc. Natl Acad. Sci. USA 120 (50), e2310584120.CrossRefGoogle ScholarPubMed
Lei, W., Lu, X., Liu, F. & Wang, M. 2022 a Non-monotonic wettability effects on displacement in heterogeneous porous media. J. Fluid Mech. 942, R5.CrossRefGoogle Scholar
Lei, W., Lu, X. & Wang, M. 2023 b Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: from interface science to multiphase flow patterns. Adv. Colloid Interface Sci. 311, 102826.CrossRefGoogle ScholarPubMed
Lei, W., Lu, X., Wu, T., Yang, H. & Wang, M. 2022 b High-performance displacement by microgel-in-oil suspension in heterogeneous porous media: microscale visualization and quantification. J. Colloid Interface Sci. 627, 848861.CrossRefGoogle ScholarPubMed
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189 (189), 165187.CrossRefGoogle Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135 (135), 337353.CrossRefGoogle Scholar
Levaché, B. & Bartolo, D. 2014 Revisiting the Saffman–Taylor experiment: imbibition patterns and liquid-entrainment transitions. Phys. Rev. Lett. 113 (4), 044501.CrossRefGoogle ScholarPubMed
Mayer, R.P. & Stowe, R.A. 1965 Mercury porosimetry – breakthrough pressure for penetration between packed spheres. J Colloid Sci. 20 (8), 893911.CrossRefGoogle Scholar
Mckinley, G.H. & Renardy, M. 2011 Wolfgang von Ohnesorge. Phys. Fluids 23 (12), 127101.CrossRefGoogle Scholar
Mehmani, A., Kelly, S., Torres-Verdín, C. & Balhoff, M. 2019 Capillary trapping following imbibition in porous media: microfluidic quantification of the impact of pore-scale surface roughness. Water Resour. Res. 55 (11), 99059925.CrossRefGoogle Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.CrossRefGoogle ScholarPubMed
Patzek, T.W. & Kristensen, J.G. 2001 Shape factor correlations of hydraulic conductance in noncircular capillaries: II. Two-phase creeping flow. J. Colloid Interface Sci. 236 (2), 305317.CrossRefGoogle Scholar
Primkulov, B.K., Pahlavan, A.A., Fu, X., Zhao, B., Macminn, C.W. & Juanes, R. 2019 Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures. J. Fluid Mech. 875, R4.CrossRefGoogle Scholar
Primkulov, B.K., Pahlavan, A.A., Fu, X., Zhao, B., Macminn, C.W. & Juanes, R. 2021 Wettability and Lenormand's diagram. J. Fluid Mech. 923, A34.CrossRefGoogle Scholar
Princen, H.M. 1969 Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30 (1), 6975.CrossRefGoogle Scholar
Rabbani, H.S., Or, D., Liu, Y., Lai, C.-Y., Lu, N.B., Datta, S.S., Stone, H.A. & Shokri, N. 2018 Suppressing viscous fingering in structured porous media. Proc. Natl Acad. Sci. USA 115 (19), 4833.CrossRefGoogle ScholarPubMed
Ransohoff, T.C. & Radke, C.J. 1988 Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore. J. Colloid Interface Sci. 121 (2), 392401.CrossRefGoogle Scholar
Roof, J.G. 1970 Snap-off of oil droplets in water-wet pores. Soc. Petrol. Engrs J. 10 (1), 8590.CrossRefGoogle Scholar
Rücker, M., et al. 2020 Relationship between wetting and capillary pressure in a crude oil/brine/rock system: from nano-scale to core-scale. J. Colloid Interface Sci. 562, 159169.CrossRefGoogle Scholar
Shalliker, R.A., Catchpoole, H.J., Dennis, G.R. & Guiochon, G. 2007 Visualising viscous fingering in chromatography columns: high viscosity solute plug. J. Chromatogr. A 1142 (1), 4855.CrossRefGoogle ScholarPubMed
Siena, M., Iliev, O., Prill, T., Riva, M. & Guadagnini, A. 2019 Identification of channeling in pore-scale flows. Geophys. Res. Lett. 46 (6), 32703278.CrossRefGoogle Scholar
Singh, K., Bultreys, T., Raeini, A.Q., Shams, M. & Blunt, M.J. 2022 New type of pore-snap-off and displacement correlations in imbibition. J. Colloid Interface Sci. 609, 384392.CrossRefGoogle ScholarPubMed
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51 (1), 429449.CrossRefGoogle Scholar
Sinton, D. 2014 Energy: the microfluidic frontier. Lab on a Chip 14 (17), 31273134.CrossRefGoogle ScholarPubMed
Stokes, J.P., Weitz, D.A., Gollub, J.P., Dougherty, A., Robbins, M.O., Chaikin, P.M. & Lindsay, H.M. 1986 Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett. 57 (14), 17181721.CrossRefGoogle Scholar
Sun, Z., Mehmani, A. & Torres-Verdín, C. 2021 Subpore-scale trapping mechanisms following imbibition: a microfluidics investigation of surface roughness effects. Water Resour. Res. 57 (2), e2020WR028324.CrossRefGoogle Scholar
Szulczewski, M.L., Macminn, C.W., Herzog, H.J. & Juanes, R. 2012 Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109 (14), 51855189.CrossRefGoogle ScholarPubMed
Thompson, K.E. 2002 Pore-scale modeling of fluid transport in disordered fibrous materials. AICHE J. 48 (7), 13691389.CrossRefGoogle Scholar
Wang, C., Mehmani, Y. & Xu, K. 2021 Capillary equilibrium of bubbles in porous media. Proc. Natl Acad. Sci. USA 118 (17), e2024069118.CrossRefGoogle ScholarPubMed
Wang, M., Wang, J., Pan, N. & Chen, S. 2007 Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75 (3), 036702.CrossRefGoogle ScholarPubMed
Wang, Z., Pereira, J.-M., Sauret, E. & Gan, Y. 2022 Emergence of unstable invasion during imbibition in regular porous media. J. Fluid Mech. 941, A40.CrossRefGoogle Scholar
Weislogel, M.M. 2012 Compound capillary rise. J. Fluid Mech. 709, 622647.CrossRefGoogle Scholar
Weller, H.G. 2008 A new approach to VOF-based interface capturing methods for incompressible and compressible flow. Report TR/HGW, 4, 35. OpenCFD.Google Scholar
Wolf, F.G., Siebert, D.N. & Surmas, R. 2020 Influence of the wettability on the residual fluid saturation for homogeneous and heterogeneous porous systems. Phys. Fluids 32 (5), 052008.CrossRefGoogle Scholar
Xu, K., Liang, T., Zhu, P., Qi, P., Lu, J., Huh, C. & Balhoff, M. 2017 A 2.5-D glass micromodel for investigation of multi-phase flow in porous media. Lab on a Chip 17 (4), 640646.CrossRefGoogle ScholarPubMed
Yazdi, A.A., Popma, A., Wong, W., Nguyen, T., Pan, Y. & Xu, J. 2016 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20 (3), 50.CrossRefGoogle Scholar
Yeganeh, M.S., et al. 2022 Solid with infused reactive liquid (SWIRL): a novel liquid-based separation approach for effective CO2 capture. Sci. Adv. 8 (6), eabm0144.CrossRefGoogle Scholar
Zhao, B., Macminn, C.W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.CrossRefGoogle ScholarPubMed
Zheng, J., Lei, W., ju, Y. & Wang, M. 2021 Investigation of spontaneous imbibition behavior in a 3D pore space under reservoir condition by lattice Boltzmann method. J. Geophys. Res.-Solid Earth 126 (6), e2021JB021987.CrossRefGoogle Scholar
Zhou, Q., Shang, X., Chen, X., Chen, Y. & Hu, G. 2022 Aerosol generation from tear film during non-contact tonometer measurement. Phys. Fluids 34 (8), 082114.CrossRefGoogle Scholar